RAGatouille项目中硬负样本挖掘的技术解析
2025-06-24 22:16:44作者:袁立春Spencer
在信息检索与问答系统领域,RAGatouille项目采用了一种称为"硬负样本挖掘"的技术来提升模型性能。这项技术的核心在于如何从海量数据中筛选出对模型训练最有挑战性的负样本,同时避免将潜在的正样本误判为负样本。
硬负样本挖掘的基本原理
硬负样本指的是那些与查询语句语义相近但实际上并非正确答案的文档。这类样本对模型训练尤为重要,因为它们能够帮助模型更好地区分相似但不正确的答案,从而提高检索的精确度。
RAGatouille的实现策略
项目团队设计了一套巧妙的筛选机制:
-
排名区间限定:设置最小排名阈值(min_rank)和最大排名阈值(max_rank)
- 前10名结果被自动排除,不视为潜在负样本
- 最大排名阈值取110或集合长度的10%中的较小值
-
分层抽样:
- 首先检索出排名在max_rank以内的文档
- 排除排名低于min_rank的文档
- 从剩余文档中随机抽取10个作为硬负样本
技术考量与优化
这种设计体现了几个重要的工程考量:
-
安全边际:通过设置min_rank=10,为潜在的正样本保留了足够的安全空间,大幅降低了误将正样本标记为负样本的风险。
-
计算效率:max_rank的动态设置既保证了足够的候选池规模,又避免了不必要的计算开销。
-
多样性保证:随机抽样策略确保了负样本的多样性,防止模型过度拟合特定类型的负样本。
实际应用建议
对于特定领域的数据集,可以考虑以下优化方向:
- 根据领域知识调整min_rank值
- 设计更精细的max_rank计算方式
- 引入领域特定的过滤规则来进一步降低错误识别率
RAGatouille的这种实现方式虽然在理论上不能完全消除错误识别问题,但通过合理的参数设置和抽样策略,在实践中表现出了良好的效果,为信息检索模型的训练提供了一种可靠的技术方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249