SQL Formatter 项目中的 T-SQL MERGE 语句 $action 伪列格式化问题解析
在 SQL 开发工作中,MERGE 语句是一个非常强大的数据操作工具,特别是在 T-SQL 中。最近在 SQL Formatter 项目中发现了一个关于 MERGE 语句 OUTPUT 子句中 $action 伪列的特殊格式化问题,值得深入探讨。
问题背景
T-SQL 的 MERGE 语句允许开发者在单个原子操作中执行插入、更新或删除操作。在 OUTPUT 子句中,$action 是一个特殊的伪列,它返回当前行执行的操作类型(INSERT、UPDATE 或 DELETE)。这个特性对于日志记录和审计非常有用。
问题现象
当开发者在 SQL Formatter 中尝试格式化包含 $action 伪列的 MERGE 语句时,格式化器会抛出解析错误。例如以下语句:
MERGE INTO DestinationTable WITH (HOLDLOCK)
AS Target
USING SourceTable
AS Source
ON Target.Id = Source.Id
WHEN NOT MATCHED THEN
INSERT (Name, Updated, Created)
VALUES (Source.Name, GETUTCDATE(), GETUTCDATE())
WHEN MATCHED THEN
UPDATE SET
Target.Name = Source.Name,
Target.Updated = Source.Updated
OUTPUT
COALESCE(Inserted.Id, Source.Id) AS SourceId,
$action AS Action;
格式化器会报错:"Unexpected "action` 没有被正确识别为 T-SQL 的特殊关键字。
技术分析
$action 是 T-SQL 特有的伪列,它:
- 仅在 MERGE 语句的 OUTPUT 子句中有效
- 不区分大小写(
$ACTION同样有效) - 是固定的伪列名,不能修改为类似
$action2的形式 - 返回值为字符串类型的操作类型
在 SQL 解析器中,这类特殊标识符需要特别处理。它们既不是普通标识符,也不是参数或变量,而是语言内置的特殊符号。
解决方案
SQL Formatter 项目通过以下方式解决了这个问题:
- 将
$action添加到 T-SQL 关键字列表中 - 确保在关键字大小写转换时正确处理(如
keywordCase:upper选项) - 保持与 SQL Server 相同的不区分大小写特性
临时解决方案
在修复版本发布前,开发者可以使用参数类型配置作为临时解决方案:
{
paramTypes: { named: ['@', '$'] }
}
这个配置告诉格式化器将 $ 开头的标识符视为参数,避免解析错误。
最佳实践
在使用 MERGE 语句时,建议:
- 明确指定
$action的别名(如$action AS Operation) - 考虑在日志表中存储操作类型
- 注意 MERGE 语句的事务隔离级别(如示例中的 HOLDLOCK 提示)
总结
SQL 格式化工具需要不断适应各种数据库特有的语法特性。这次 $action 伪列的修复体现了 SQL Formatter 项目对 T-SQL 完整性的持续支持。开发者在使用高级 SQL 特性时,应当注意工具链的兼容性,并及时报告发现的问题,共同完善开源生态。
对于需要处理 MERGE 语句输出结果的场景,正确格式化的 SQL 不仅能提高代码可读性,还能减少潜在的语法错误,是数据库开发中不可忽视的一环。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00