Crawl4AI项目中使用Azure OpenAI进行知识图谱提取的技术实践
2025-05-03 20:22:41作者:邓越浪Henry
概述
在Crawl4AI项目中,LLMExtractionStrategy是一个强大的工具,它能够从网页内容中提取结构化数据。本文将重点介绍如何利用Azure OpenAI服务替代传统的OpenAI API密钥,实现高效的知识图谱提取。
Azure OpenAI集成原理
LLMExtractionStrategy的核心功能是通过大语言模型(LLM)从非结构化文本中提取结构化信息。当需要与Azure OpenAI服务集成时,关键在于正确配置API连接参数。与标准OpenAI API相比,Azure OpenAI服务需要额外的配置项,包括API基础地址、API版本等。
具体实现步骤
1. 环境变量配置
首先需要设置必要的环境变量:
import os
os.environ["AZURE_API_KEY"] = "你的Azure API密钥"
os.environ["AZURE_API_BASE"] = "你的Azure API基础地址"
os.environ["AZURE_API_VERSION"] = "API版本号" # 例如"2024-02-15-preview"
2. 定义数据结构模型
使用Pydantic模型定义期望提取的知识图谱结构:
from pydantic import BaseModel
from typing import List
class Entity(BaseModel):
name: str
description: str
class Relationship(BaseModel):
entity1: Entity
entity2: Entity
description: str
relation_type: str
class KnowledgeGraph(BaseModel):
entities: List[Entity]
relationships: List[Relationship]
3. 配置提取策略
创建LLMExtractionStrategy实例时,指定Azure OpenAI作为提供者:
extraction_strategy = LLMExtractionStrategy(
provider="azure/gpt-4o-mini", # 指定Azure服务
api_base=os.environ["AZURE_API_BASE"],
api_token=os.environ["AZURE_API_KEY"],
schema=KnowledgeGraph.model_json_schema(),
extraction_type="schema",
instruction="从给定文本中提取实体和关系。"
)
4. 执行网页抓取和内容提取
结合AsyncWebCrawler使用配置好的提取策略:
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
url="目标网页URL",
bypass_cache=True,
extraction_strategy=extraction_strategy
)
# 保存提取结果
with open("kb_test.json", "w") as f:
f.write(result.extracted_content)
注意事项
-
API版本兼容性:Azure OpenAI服务的API版本会定期更新,需要确保使用当前支持的版本号。
-
参数命名变化:在Crawl4AI的早期版本中,
api_base
参数可能命名为url_base
,如果遇到问题可以尝试调整。 -
模型可用性:确保指定的模型名称(如"gpt-4o-mini")在Azure OpenAI服务中已部署。
-
配额限制:Azure OpenAI服务可能有调用频率限制,需要根据实际需求调整调用策略。
应用场景
这种集成方式特别适合:
- 企业级应用需要符合数据合规要求
- 需要与现有Azure生态系统深度集成的场景
- 对API调用有特殊安全要求的项目
总结
通过Crawl4AI的LLMExtractionStrategy与Azure OpenAI服务的集成,开发者可以构建强大的网页内容结构化提取系统。这种方法不仅保持了OpenAI模型的强大能力,还提供了企业级的安全性和可靠性保障。在实际应用中,建议先进行小规模测试,确保所有参数配置正确后再扩大使用规模。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K