Crawl4AI项目中使用Azure OpenAI进行知识图谱提取的技术实践
2025-05-03 15:07:31作者:邓越浪Henry
概述
在Crawl4AI项目中,LLMExtractionStrategy是一个强大的工具,它能够从网页内容中提取结构化数据。本文将重点介绍如何利用Azure OpenAI服务替代传统的OpenAI API密钥,实现高效的知识图谱提取。
Azure OpenAI集成原理
LLMExtractionStrategy的核心功能是通过大语言模型(LLM)从非结构化文本中提取结构化信息。当需要与Azure OpenAI服务集成时,关键在于正确配置API连接参数。与标准OpenAI API相比,Azure OpenAI服务需要额外的配置项,包括API基础地址、API版本等。
具体实现步骤
1. 环境变量配置
首先需要设置必要的环境变量:
import os
os.environ["AZURE_API_KEY"] = "你的Azure API密钥"
os.environ["AZURE_API_BASE"] = "你的Azure API基础地址"
os.environ["AZURE_API_VERSION"] = "API版本号" # 例如"2024-02-15-preview"
2. 定义数据结构模型
使用Pydantic模型定义期望提取的知识图谱结构:
from pydantic import BaseModel
from typing import List
class Entity(BaseModel):
name: str
description: str
class Relationship(BaseModel):
entity1: Entity
entity2: Entity
description: str
relation_type: str
class KnowledgeGraph(BaseModel):
entities: List[Entity]
relationships: List[Relationship]
3. 配置提取策略
创建LLMExtractionStrategy实例时,指定Azure OpenAI作为提供者:
extraction_strategy = LLMExtractionStrategy(
provider="azure/gpt-4o-mini", # 指定Azure服务
api_base=os.environ["AZURE_API_BASE"],
api_token=os.environ["AZURE_API_KEY"],
schema=KnowledgeGraph.model_json_schema(),
extraction_type="schema",
instruction="从给定文本中提取实体和关系。"
)
4. 执行网页抓取和内容提取
结合AsyncWebCrawler使用配置好的提取策略:
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
url="目标网页URL",
bypass_cache=True,
extraction_strategy=extraction_strategy
)
# 保存提取结果
with open("kb_test.json", "w") as f:
f.write(result.extracted_content)
注意事项
-
API版本兼容性:Azure OpenAI服务的API版本会定期更新,需要确保使用当前支持的版本号。
-
参数命名变化:在Crawl4AI的早期版本中,
api_base参数可能命名为url_base,如果遇到问题可以尝试调整。 -
模型可用性:确保指定的模型名称(如"gpt-4o-mini")在Azure OpenAI服务中已部署。
-
配额限制:Azure OpenAI服务可能有调用频率限制,需要根据实际需求调整调用策略。
应用场景
这种集成方式特别适合:
- 企业级应用需要符合数据合规要求
- 需要与现有Azure生态系统深度集成的场景
- 对API调用有特殊安全要求的项目
总结
通过Crawl4AI的LLMExtractionStrategy与Azure OpenAI服务的集成,开发者可以构建强大的网页内容结构化提取系统。这种方法不仅保持了OpenAI模型的强大能力,还提供了企业级的安全性和可靠性保障。在实际应用中,建议先进行小规模测试,确保所有参数配置正确后再扩大使用规模。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135