SongEval 的安装和配置教程
2025-05-22 02:55:33作者:温玫谨Lighthearted
项目基础介绍
SongEval 是一个基于开源数据集的音频美学评价工具包。该项目旨在通过机器学习技术自动评估歌曲在五个感知美学维度上的得分,这些维度包括整体连贯性、记忆性、声音呼吸与句法的自然性、歌曲结构的清晰度以及整体音乐性。SongEval 的目标是为音乐创作者和专业人士提供一个工具,帮助他们快速评估和改进音乐作品。
主要编程语言
该项目主要使用 Python 编程语言实现。
项目使用的关键技术和框架
SongEval 工具包使用了一些先进的机器学习技术和深度学习框架,主要包括:
- 预训练神经网络模型:用于感知美学评价。
- TensorFlow 或 PyTorch:这些是流行的深度学习框架,用于模型的训练和推断。
项目安装和配置的准备工作
在开始安装 SongEval 之前,请确保您的计算机满足以下要求:
- Python 3.6 或更高版本。
- pip(Python 包管理器)。
- Git(用于克隆仓库)。
详细安装步骤
以下是安装和配置 SongEval 的详细步骤:
-
克隆仓库: 打开命令行工具,执行以下命令以克隆 SongEval 的 GitHub 仓库:
git clone https://github.com/ASLP-lab/SongEval.git
-
安装依赖: 进入克隆后的
SongEval
目录,然后使用 pip 安装项目所需的依赖:cd SongEval pip install -r requirements.txt
-
执行评估: 安装完所有依赖后,您可以使用以下命令来评估单个音频文件:
python eval.py -i /path/to/audio.mp3 -o /path/to/output
如果需要评估一个音频文件列表或目录中的所有音频文件,可以使用以下命令:
python eval.py -i /path/to/audio_list.txt -o /path/to/output python eval.py -i /path/to/audio_directory -o /path/to/output
如果您想强制在 CPU 上进行评估(可能会比较慢),可以添加
--use_cpu
参数:python eval.py -i /path/to/audio.wav -o /path/to/output --use_cpu
完成以上步骤后,您就可以使用 SongEval 工具包对音乐作品进行美学评价了。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
47
253

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
347
381

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
516

React Native鸿蒙化仓库
C++
179
263

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0