LMDeploy项目在Tesla T4双卡部署中的Segmentation Fault问题分析与解决
2025-06-03 13:19:04作者:盛欣凯Ernestine
问题背景
在使用LMDeploy项目的最新版本(0.7.0.post2)时,开发者在Tesla T4双卡(SM75架构)环境下部署API Server时遇到了Segmentation fault问题。该问题表现为程序在启动几秒后崩溃,仅显示"Segmentation fault (core dumped)"错误信息,没有其他明显报错。通过nvidia-smi观察,发现Python进程在崩溃前为每张显卡申请了约137MB显存。
环境配置
问题出现的环境配置如下:
- 硬件:两张Tesla T4 16G显卡(SM75架构),采用张量并行方式
- 软件:RockyOS 5.14系统,CUDA 12.4驱动
- 模型:Qwen2.5-Coder-32B-Instruct-GPTQ-Int4量化模型
- 部署命令参数:使用TurboMind推理引擎,设置最大批次大小为4,会话长度16284,张量并行度为2
问题排查过程
初步分析
开发者首先尝试了以下排查步骤:
- 使用--log-level INFO和--log-level DEBUG参数获取更详细的日志信息
- 在Docker容器中复现问题
- 对比单卡环境下运行Qwen 14B模型的情况
日志分析
通过调试日志,可以观察到以下关键信息:
- TurboMind引擎成功加载了模型配置
- NCCL通信初始化过程看似正常完成
- 日志显示模型配置参数正确,包括头数、隐藏层维度等关键参数
- 问题发生在NCCL初始化完成后,模型推理开始前的阶段
对比测试
开发者发现:
- 相同环境下,单卡运行Qwen 14B模型没有问题
- VLLM推理引擎下相同模型可以正常运行
- 问题似乎与多卡环境下的通信机制有关
根本原因
经过深入排查,发现问题根源在于PyTorch 2.5.1版本的依赖项nvidia_nccl_cu12==2.21.5存在兼容性问题。这个版本的NCCL库在多卡通信时可能导致段错误,特别是在Tesla T4这种较老的显卡架构上。
解决方案
针对这个问题,开发者找到了以下解决方法:
- 升级NCCL版本:将nvidia_nccl_cu12升级到2.25.1版本
- 忽略依赖警告:在升级过程中可能需要忽略PyTorch的依赖版本警告
- 替代方案:如果升级后仍有问题,可以考虑:
- 使用单卡模式运行
- 切换到VLLM后端
- 降低模型规模以适应单卡环境
技术建议
对于使用LMDeploy项目在多卡环境部署大模型的开发者,建议:
- 版本兼容性检查:在部署前仔细检查PyTorch、CUDA和NCCL的版本兼容性
- 日志监控:始终使用--log-level DEBUG参数启动服务,以便获取详细错误信息
- 渐进式测试:先使用小模型或单卡环境验证系统基本功能,再逐步扩展到多卡和大模型
- 环境隔离:考虑使用Docker容器隔离部署环境,避免系统级依赖冲突
总结
这个案例展示了深度学习部署过程中版本依赖问题可能导致的隐蔽错误。通过系统性的日志分析和对比测试,开发者能够定位到NCCL库的版本兼容性问题。这也提醒我们在生产环境部署前,需要进行充分的环境验证和兼容性测试,特别是当使用多卡并行计算时。LMDeploy项目作为高效的推理部署工具,在实际应用中需要注意底层依赖的版本管理,以确保系统稳定运行。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
668
154
Ascend Extension for PyTorch
Python
218
236
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
305
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
257
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
63
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
652
仓颉编程语言运行时与标准库。
Cangjie
141
876
仓颉编译器源码及 cjdb 调试工具。
C++
133
866