在CML项目中配置AWS云运行器使用Ubuntu 20.04镜像的实践指南
2025-06-15 05:39:40作者:瞿蔚英Wynne
在使用iterative/cml项目部署云运行器时,默认情况下系统会创建基于Ubuntu 18.04的实例。然而,许多现代机器学习项目可能需要更高版本的操作系统支持。本文将详细介绍如何通过正确配置使CML运行器使用Ubuntu 20.04镜像。
问题背景
CML(Continuous Machine Learning)是一个强大的工具,可以帮助开发者在云环境中自动部署机器学习工作流。当使用cml runner launch命令在AWS上创建运行器时,系统默认会使用Ubuntu 18.04作为基础镜像。这在某些情况下可能会带来兼容性问题,特别是当项目依赖需要较新操作系统版本时。
解决方案
通过深入研究CML及其底层terraform-provider-iterative项目的代码,我们发现可以通过--cloud-image参数来指定自定义镜像。这个参数允许用户选择特定的AMI(Amazon Machine Image)来启动实例。
正确的使用方法是直接传递完整的AMI名称,例如:
--cloud-image="Deep Learning AMI GPU CUDA 11.2.1 (Ubuntu 20.04) 20220626"
实现步骤
- 在GitHub Actions工作流文件中,修改
cml runner launch命令 - 添加
--cloud-image参数并指定所需的Ubuntu 20.04镜像名称 - 确保镜像名称与AWS Marketplace中提供的完全匹配
注意事项
- 镜像名称必须精确匹配AWS中可用的AMI名称
- 使用NVIDIA GPU镜像时,建议选择包含CUDA支持的官方深度学习AMI
- 首次使用新镜像时,建议监控实例启动过程以确保一切正常
- 不同AWS区域的可用镜像可能有所不同
技术原理
CML底层使用terraform-provider-iterative来管理云资源。当指定--cloud-image参数时,系统会查询AWS的AMI列表并匹配最符合要求的镜像。对于Ubuntu系统,建议使用AWS官方或NVIDIA提供的深度学习专用镜像,这些镜像通常已经预装了必要的驱动和工具。
通过正确配置镜像参数,开发者可以灵活选择适合项目需求的操作系统环境,确保机器学习工作流能够在最佳环境中运行。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217