DWV 开源项目教程
1. 项目介绍
DWV(DICOM Web Viewer)是一个基于HTML5的开源DICOM查看器。它允许用户在现代浏览器中查看DICOM文件,支持多种图像处理功能,如缩放、平移、窗宽窗位调整等。DWV项目的目标是为医疗领域的专业人员提供一个轻量级、易于集成和扩展的DICOM查看解决方案。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下工具:
- Node.js(建议版本14.x或更高)
- Git
2.2 克隆项目
首先,克隆DWV项目到本地:
git clone https://github.com/ivmartel/dwv.git
cd dwv
2.3 安装依赖
进入项目目录后,安装所需的依赖:
npm install
2.4 启动开发服务器
安装完成后,启动开发服务器:
npm start
启动后,打开浏览器并访问 http://localhost:8080
,你将看到DWV的示例页面。
2.5 加载DICOM文件
在示例页面中,你可以通过点击“Load”按钮来加载本地的DICOM文件,或者直接拖拽DICOM文件到页面中进行查看。
3. 应用案例和最佳实践
3.1 医疗影像系统集成
DWV可以轻松集成到现有的医疗影像系统中,提供一个强大的DICOM查看功能。通过简单的API调用,你可以在自己的系统中嵌入DWV,并根据需要进行定制。
3.2 远程诊断
在远程诊断场景中,DWV可以作为一个轻量级的DICOM查看工具,帮助医生在远程环境下查看和分析患者的影像数据。通过结合WebRTC等技术,可以实现实时的远程会诊。
3.3 教育和培训
DWV还可以用于医学教育和培训,帮助学生和医生在浏览器中查看和分析各种DICOM影像,提高他们的诊断能力。
4. 典型生态项目
4.1 OHIF Viewer
OHIF Viewer是一个基于DWV的开源DICOM查看器,提供了更丰富的功能和更好的用户体验。它支持多图像对比、测量工具、报告生成等功能,适合用于临床环境。
4.2 Cornerstone.js
Cornerstone.js是一个用于构建医疗影像查看器的JavaScript库,与DWV类似,但它提供了更多的图像处理和渲染功能,适合需要高度定制化的项目。
4.3 DICOMweb
DICOMweb是一个基于Web的DICOM标准,DWV可以与DICOMweb服务集成,实现从远程服务器加载DICOM影像的功能,适合需要远程访问影像数据的场景。
通过以上模块的介绍,你应该已经对DWV项目有了一个全面的了解,并能够快速启动和使用它。希望这个教程对你有所帮助!
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0307- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









