DWV 开源项目教程
1. 项目介绍
DWV(DICOM Web Viewer)是一个基于HTML5的开源DICOM查看器。它允许用户在现代浏览器中查看DICOM文件,支持多种图像处理功能,如缩放、平移、窗宽窗位调整等。DWV项目的目标是为医疗领域的专业人员提供一个轻量级、易于集成和扩展的DICOM查看解决方案。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下工具:
- Node.js(建议版本14.x或更高)
- Git
2.2 克隆项目
首先,克隆DWV项目到本地:
git clone https://github.com/ivmartel/dwv.git
cd dwv
2.3 安装依赖
进入项目目录后,安装所需的依赖:
npm install
2.4 启动开发服务器
安装完成后,启动开发服务器:
npm start
启动后,打开浏览器并访问 http://localhost:8080,你将看到DWV的示例页面。
2.5 加载DICOM文件
在示例页面中,你可以通过点击“Load”按钮来加载本地的DICOM文件,或者直接拖拽DICOM文件到页面中进行查看。
3. 应用案例和最佳实践
3.1 医疗影像系统集成
DWV可以轻松集成到现有的医疗影像系统中,提供一个强大的DICOM查看功能。通过简单的API调用,你可以在自己的系统中嵌入DWV,并根据需要进行定制。
3.2 远程诊断
在远程诊断场景中,DWV可以作为一个轻量级的DICOM查看工具,帮助医生在远程环境下查看和分析患者的影像数据。通过结合WebRTC等技术,可以实现实时的远程会诊。
3.3 教育和培训
DWV还可以用于医学教育和培训,帮助学生和医生在浏览器中查看和分析各种DICOM影像,提高他们的诊断能力。
4. 典型生态项目
4.1 OHIF Viewer
OHIF Viewer是一个基于DWV的开源DICOM查看器,提供了更丰富的功能和更好的用户体验。它支持多图像对比、测量工具、报告生成等功能,适合用于临床环境。
4.2 Cornerstone.js
Cornerstone.js是一个用于构建医疗影像查看器的JavaScript库,与DWV类似,但它提供了更多的图像处理和渲染功能,适合需要高度定制化的项目。
4.3 DICOMweb
DICOMweb是一个基于Web的DICOM标准,DWV可以与DICOMweb服务集成,实现从远程服务器加载DICOM影像的功能,适合需要远程访问影像数据的场景。
通过以上模块的介绍,你应该已经对DWV项目有了一个全面的了解,并能够快速启动和使用它。希望这个教程对你有所帮助!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00