DWV 开源项目教程
1. 项目介绍
DWV(DICOM Web Viewer)是一个基于HTML5的开源DICOM查看器。它允许用户在现代浏览器中查看DICOM文件,支持多种图像处理功能,如缩放、平移、窗宽窗位调整等。DWV项目的目标是为医疗领域的专业人员提供一个轻量级、易于集成和扩展的DICOM查看解决方案。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下工具:
- Node.js(建议版本14.x或更高)
- Git
2.2 克隆项目
首先,克隆DWV项目到本地:
git clone https://github.com/ivmartel/dwv.git
cd dwv
2.3 安装依赖
进入项目目录后,安装所需的依赖:
npm install
2.4 启动开发服务器
安装完成后,启动开发服务器:
npm start
启动后,打开浏览器并访问 http://localhost:8080,你将看到DWV的示例页面。
2.5 加载DICOM文件
在示例页面中,你可以通过点击“Load”按钮来加载本地的DICOM文件,或者直接拖拽DICOM文件到页面中进行查看。
3. 应用案例和最佳实践
3.1 医疗影像系统集成
DWV可以轻松集成到现有的医疗影像系统中,提供一个强大的DICOM查看功能。通过简单的API调用,你可以在自己的系统中嵌入DWV,并根据需要进行定制。
3.2 远程诊断
在远程诊断场景中,DWV可以作为一个轻量级的DICOM查看工具,帮助医生在远程环境下查看和分析患者的影像数据。通过结合WebRTC等技术,可以实现实时的远程会诊。
3.3 教育和培训
DWV还可以用于医学教育和培训,帮助学生和医生在浏览器中查看和分析各种DICOM影像,提高他们的诊断能力。
4. 典型生态项目
4.1 OHIF Viewer
OHIF Viewer是一个基于DWV的开源DICOM查看器,提供了更丰富的功能和更好的用户体验。它支持多图像对比、测量工具、报告生成等功能,适合用于临床环境。
4.2 Cornerstone.js
Cornerstone.js是一个用于构建医疗影像查看器的JavaScript库,与DWV类似,但它提供了更多的图像处理和渲染功能,适合需要高度定制化的项目。
4.3 DICOMweb
DICOMweb是一个基于Web的DICOM标准,DWV可以与DICOMweb服务集成,实现从远程服务器加载DICOM影像的功能,适合需要远程访问影像数据的场景。
通过以上模块的介绍,你应该已经对DWV项目有了一个全面的了解,并能够快速启动和使用它。希望这个教程对你有所帮助!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00