Icecream 项目技术文档
本文档旨在帮助用户安装、使用和理解 Icecream 项目,详细介绍其功能、配置和操作步骤。
1. 安装指南
推荐安装方式
我们建议您使用发行版维护的软件包,如果可能的话。您的发行版应该提供定制的启动脚本,使 Icecream 更好地适应系统的配置。
我们强烈建议您与 Icecream 一起安装 icemon 或 icecream-sundae。
源代码安装
如果您想从源代码安装,请参考源代码包中提供的 README 文件中的说明。
2. 项目的使用说明
要使用 Icecream,您需要以下配置:
- 至少一个运行调度器的机器(运行
./icecc-scheduler -d) - 许多运行守护进程的机器(运行
./iceccd -d)
可以在一个机器上同时运行调度器和守护进程,在另一个机器上只运行守护进程,从而形成一个由两个节点组成的编译集群。
如果您想使用 Icecream 编译,请确保 $prefix/lib/icecc/bin 是您的路径中的第一个条目,例如:
export PATH=/usr/lib/icecc/bin:$PATH
(提示:将此命令放入 ~/.bashrc 或 /etc/profile 中,这样每次都不必重新输入。)
然后,您只需使用 make -j <num> 命令编译,其中 <num> 是您想要并行编译的作业数。
作为一个起点,可以使用逻辑处理器的数量乘以 2,或者如果您的编译集群可以处理所有编译作业,可以设置一个更大的数字。但请注意,过大的数字实际上可能会使构建速度变慢(例如,如果本地机器一次处理的作业比它能处理的更多)。
以下是一个示例:
make -j6
警告: 不要在不受信任的环境中使用 Icecream。如果您必须在这样的网络中使用,请以未特权用户身份运行守护进程和调度器!但您将不得不依赖同质网络(请参阅下文)。
如果您想查看您的 Icecream 编译集群概览,或者只是想获取一些有趣的统计信息,您可能想运行 "icemon"(来自单独的仓库/包)。
使编译集群持久化
如果您重新启动计算机,您仍然希望它在重启后仍然是 Icecream 集群的一部分。请参考您的发行版的文档。如果您使用的是发行版提供的软件包,这应该是自动的(或者是一个简单的配置更改)。
使调度器持久化
通过为守护进程添加 --scheduler-host 选项和为调度器添加 --persistent-client-connection 选项,即使有更好的调度器可用,客户端连接也不会从调度器断开。
3. 项目API使用文档
Icecream 的 API 使用相对简单,主要是通过环境变量和命令行选项进行配置和使用。以下是一些基本的使用示例:
- 设置编译环境:
ICECC_VERSION=icecc-environment.tar.bz2
- 使用 Icecream 编译:
make -j <num>
- 查看编译集群状态:
icemon
更多详细的使用方法和选项,请参考官方文档。
4. 项目安装方式
通过发行版仓库安装
我们建议您从发行版的软件仓库中安装 Icecream,这样会自动处理所有依赖和配置。
从源代码安装
如果您选择从源代码安装,请按照以下步骤操作:
- 获取源代码包。
- 解压缩源代码包。
- 进入源代码目录。
- 编译和安装:
./configure
make
make install
确保在编译时正确设置 PREFIX,以便 Icecream 安装到正确的位置。
以上是 Icecream 项目的基本技术文档。使用前,请确保仔细阅读并遵循上述指南。如果您遇到任何问题,请参考故障排除部分或访问项目的官方支持渠道。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C084
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00