Apache DataSketches-Java 7.0.0发布:基于Java 17的重大升级
Apache DataSketches是一个开源的数据分析库,专注于处理大规模数据流。它提供了一系列高效的近似算法(称为"sketches"),用于解决大数据环境下的统计计算问题,如基数估计、频率分析、分位数计算等。这些算法能够在保证计算精度的同时,显著降低内存占用和计算复杂度。
Java 17支持与FFM API集成
DataSketches-Java 7.0.0版本标志着该项目的一个重要里程碑,它完全迁移到了Java 17平台。这一变化不仅仅是简单的JDK版本升级,而是充分利用了Java 17引入的新特性,特别是Foreign Function & Memory (FFM) API(JEP 412)。
FFM API目前处于孵化阶段,它为Java程序提供了更高效、更安全的内存管理能力,特别是对于需要直接操作堆外内存的场景。DataSketches库中的许多算法都需要处理大量数据,直接内存访问可以显著提高性能。通过集成FFM API,7.0.0版本在内存管理方面实现了质的飞跃。
值得注意的是,FFM API在Java 17中位于jdk.incubator.foreign包下,而在Java 21中已迁移至java.base/java.lang.foreign。由于Java对孵化阶段API不提供向后兼容性保证,这意味着使用Java 17编译的DataSketches-Java 7.0.0代码将无法直接在Java 21上运行。
内存管理API的重大变更
为了适应FFM API的引入,DataSketches-Java 7.0.0对其内存管理接口进行了重大调整。这些变化主要体现在DataSketches-Memory 4.1.0依赖中,该组件负责管理所有的直接内存操作。
在之前的版本(如6.1.1)中,分配直接内存的代码非常简单:
try (WritableMemory wmem = WritableMemory.allocateDirect(4096)) {
// 使用wmem进行操作
} // 自动关闭内存
而在7.0.0版本中,由于FFM API的引入,内存管理变得更加显式和结构化:
try (ResourceScope scope = WritableMemory.allocateDirect(4096).scope()) {
// 使用scope管理的内存进行操作
} // 自动释放内存
这里引入的ResourceScope是FFM API的核心概念之一,它提供了更精细的内存生命周期控制。这种变化虽然增加了些许复杂性,但带来了更好的内存安全性和更明确的资源管理语义。
技术影响与迁移考虑
对于现有用户来说,升级到7.0.0版本需要考虑几个重要因素:
- Java版本要求:必须使用Java 17或更高版本,不再支持Java 8和11
- API兼容性:涉及直接内存操作的部分API发生了不兼容变更
- 未来兼容性:由于FFM API仍在演进,与未来Java版本的兼容性需要特别关注
这些变化虽然带来了一定的迁移成本,但从长远来看,它们为DataSketches库带来了更现代化的内存管理能力,为未来的性能优化和功能扩展奠定了基础。
总结
Apache DataSketches-Java 7.0.0的发布代表了该项目向现代Java生态系统的迈进。通过拥抱Java 17和FFM API,该库在内存管理和性能方面迈上了一个新台阶。虽然这些变化带来了一些API调整和迁移挑战,但它们为处理大规模数据流提供了更强大、更安全的基础设施。对于需要处理海量数据并追求高效能的应用来说,这次升级无疑提供了更强大的工具支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00