Verl-Pipeline 项目安装与配置指南
2025-06-19 21:38:20作者:范垣楠Rhoda
项目概述
Verl-Pipeline 是一个专注于强化学习训练和推理的高性能框架,特别针对大规模语言模型(LLM)的强化学习场景进行了优化。该项目支持多种后端技术栈,包括 FSDP、Megatron-LM 等训练后端,以及 SGLang、vLLM 等推理后端,为研究人员和开发者提供了灵活的配置选择。
系统要求
在开始安装 Verl-Pipeline 之前,请确保您的系统满足以下基本要求:
- Python 版本:3.9 或更高版本
- CUDA 工具包:12.1 或更高版本(针对 GPU 加速)
- NVIDIA 显卡:支持 CUDA 的 NVIDIA GPU(推荐显存 16GB 以上)
后端选择建议
Verl-Pipeline 提供了多种后端选择,适用于不同场景:
训练后端
-
FSDP 后端(推荐)
- 适合研究、原型开发和算法验证
- 配置简单,调试方便
- 支持快速迭代不同模型和数据集
-
Megatron-LM 后端
- 适合追求极致扩展性的用户
- 支持大规模分布式训练
- 当前兼容 Megatron-LM v0.11.0 核心模块
推理后端
- SGLang:专为 xAI 研究优化的推理后端
- vLLM:高性能推理引擎
- TGI:Text Generation Inference 服务
安装方法详解
方法一:SGLang 专用安装(推荐)
SGLang 后端特别适合强化学习研究场景,安装步骤如下:
# 创建并激活虚拟环境
python3 -m venv ~/.python/verl-sglang
source ~/.python/verl-sglang/bin/activate
# 升级 pip 并安装 uv 加速工具
python3 -m pip install --upgrade pip
python3 -m pip install --upgrade uv
# 克隆并安装 verl-SGLang
git clone https://github.com/volcengine/verl verl-sglang
cd verl-sglang
python3 -m uv pip install .
# 安装 SGLang 最新稳定版(含所有组件)
python3 -m uv pip install "sglang[all]==0.4.3.post3"
技术说明:SGLang 后端原生支持 RLHF(基于人类反馈的强化学习),无需额外代码修改即可直接使用。
方法二:Docker 容器安装
对于希望快速部署的用户,我们提供了预构建的 Docker 镜像:
- 启动 Docker 容器:
docker run --runtime=nvidia -it --rm --shm-size="10g" --cap-add=SYS_ADMIN -v <image:tag>
- 容器内安装 Verl-Pipeline:
# 安装开发版(推荐)
git clone https://github.com/volcengine/verl
cd verl
pip3 install -e .
# 或者通过 PyPI 安装稳定版
pip3 install verl
镜像技术栈:
- PyTorch 2.4.0 + CUDA 12.4
- Megatron-LM core_r0.11.0(已预装,无需额外配置)
- vLLM 0.6.3
- Ray 2.10.0
- TransformerEngine 2.0.0
方法三:自定义环境安装
对于高级用户,可以使用 conda 管理环境:
# 创建 conda 环境
conda create -n verl python==3.10
conda activate verl
# 安装 PyTorch 和 flash-attn
pip3 install torch==2.4.0
pip3 install flash-attn --no-build-isolation
# 安装 Verl-Pipeline
git clone https://github.com/volcengine/verl.git
cd verl
pip3 install -e .
可选组件:Megatron-LM 支持
# 安装 Apex
pip3 install -v --disable-pip-version-check --no-cache-dir --no-build-isolation \
--config-settings "--build-option=--cpp_ext" \
--config-settings "--build-option=--cuda_ext" \
git+https://github.com/NVIDIA/apex
# 安装 Transformer Engine
pip3 install git+https://github.com/NVIDIA/TransformerEngine.git@stable
# 安装 Megatron-LM core v0.11.0
git clone -b core_v0.11.0 https://github.com/NVIDIA/Megatron-LM.git
cd Megatron-LM
pip3 install -e .
常见问题解答
-
版本兼容性问题:
- 使用 SGLang 时,可能会报告与 vLLM 的版本冲突,可以安全忽略
- Megatron-LM v0.11.0 已完全兼容,无需打补丁
-
环境隔离建议:
- 强烈建议使用虚拟环境(venv 或 conda)隔离不同项目
- 对于生产环境,推荐使用 Docker 容器保证环境一致性
-
硬件要求:
- 训练大型模型需要高性能 GPU(如 A100、H100)
- 小规模实验可使用消费级显卡(如 RTX 3090/4090)
后续步骤
完成安装后,您可以:
- 参考项目文档配置训练任务
- 尝试运行示例脚本验证安装
- 根据需求调整模型参数和训练策略
Verl-Pipeline 提供了强大的工具链支持强化学习全流程,从数据准备到模型训练再到推理部署,帮助您高效开展 AI 研究与应用开发。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869