Verl-Pipeline 项目安装与配置指南
2025-06-19 03:47:29作者:范垣楠Rhoda
项目概述
Verl-Pipeline 是一个专注于强化学习训练和推理的高性能框架,特别针对大规模语言模型(LLM)的强化学习场景进行了优化。该项目支持多种后端技术栈,包括 FSDP、Megatron-LM 等训练后端,以及 SGLang、vLLM 等推理后端,为研究人员和开发者提供了灵活的配置选择。
系统要求
在开始安装 Verl-Pipeline 之前,请确保您的系统满足以下基本要求:
- Python 版本:3.9 或更高版本
- CUDA 工具包:12.1 或更高版本(针对 GPU 加速)
- NVIDIA 显卡:支持 CUDA 的 NVIDIA GPU(推荐显存 16GB 以上)
后端选择建议
Verl-Pipeline 提供了多种后端选择,适用于不同场景:
训练后端
-
FSDP 后端(推荐)
- 适合研究、原型开发和算法验证
- 配置简单,调试方便
- 支持快速迭代不同模型和数据集
-
Megatron-LM 后端
- 适合追求极致扩展性的用户
- 支持大规模分布式训练
- 当前兼容 Megatron-LM v0.11.0 核心模块
推理后端
- SGLang:专为 xAI 研究优化的推理后端
- vLLM:高性能推理引擎
- TGI:Text Generation Inference 服务
安装方法详解
方法一:SGLang 专用安装(推荐)
SGLang 后端特别适合强化学习研究场景,安装步骤如下:
# 创建并激活虚拟环境
python3 -m venv ~/.python/verl-sglang
source ~/.python/verl-sglang/bin/activate
# 升级 pip 并安装 uv 加速工具
python3 -m pip install --upgrade pip
python3 -m pip install --upgrade uv
# 克隆并安装 verl-SGLang
git clone https://github.com/volcengine/verl verl-sglang
cd verl-sglang
python3 -m uv pip install .
# 安装 SGLang 最新稳定版(含所有组件)
python3 -m uv pip install "sglang[all]==0.4.3.post3"
技术说明:SGLang 后端原生支持 RLHF(基于人类反馈的强化学习),无需额外代码修改即可直接使用。
方法二:Docker 容器安装
对于希望快速部署的用户,我们提供了预构建的 Docker 镜像:
- 启动 Docker 容器:
docker run --runtime=nvidia -it --rm --shm-size="10g" --cap-add=SYS_ADMIN -v <image:tag>
- 容器内安装 Verl-Pipeline:
# 安装开发版(推荐)
git clone https://github.com/volcengine/verl
cd verl
pip3 install -e .
# 或者通过 PyPI 安装稳定版
pip3 install verl
镜像技术栈:
- PyTorch 2.4.0 + CUDA 12.4
- Megatron-LM core_r0.11.0(已预装,无需额外配置)
- vLLM 0.6.3
- Ray 2.10.0
- TransformerEngine 2.0.0
方法三:自定义环境安装
对于高级用户,可以使用 conda 管理环境:
# 创建 conda 环境
conda create -n verl python==3.10
conda activate verl
# 安装 PyTorch 和 flash-attn
pip3 install torch==2.4.0
pip3 install flash-attn --no-build-isolation
# 安装 Verl-Pipeline
git clone https://github.com/volcengine/verl.git
cd verl
pip3 install -e .
可选组件:Megatron-LM 支持
# 安装 Apex
pip3 install -v --disable-pip-version-check --no-cache-dir --no-build-isolation \
--config-settings "--build-option=--cpp_ext" \
--config-settings "--build-option=--cuda_ext" \
git+https://github.com/NVIDIA/apex
# 安装 Transformer Engine
pip3 install git+https://github.com/NVIDIA/TransformerEngine.git@stable
# 安装 Megatron-LM core v0.11.0
git clone -b core_v0.11.0 https://github.com/NVIDIA/Megatron-LM.git
cd Megatron-LM
pip3 install -e .
常见问题解答
-
版本兼容性问题:
- 使用 SGLang 时,可能会报告与 vLLM 的版本冲突,可以安全忽略
- Megatron-LM v0.11.0 已完全兼容,无需打补丁
-
环境隔离建议:
- 强烈建议使用虚拟环境(venv 或 conda)隔离不同项目
- 对于生产环境,推荐使用 Docker 容器保证环境一致性
-
硬件要求:
- 训练大型模型需要高性能 GPU(如 A100、H100)
- 小规模实验可使用消费级显卡(如 RTX 3090/4090)
后续步骤
完成安装后,您可以:
- 参考项目文档配置训练任务
- 尝试运行示例脚本验证安装
- 根据需求调整模型参数和训练策略
Verl-Pipeline 提供了强大的工具链支持强化学习全流程,从数据准备到模型训练再到推理部署,帮助您高效开展 AI 研究与应用开发。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
878