SnarkJS中生成Groth16证明时"Scalar size does not match"错误解析
问题背景
在使用Circom和SnarkJS进行零知识证明开发时,开发者经常会遇到"Scalar size does not match"的错误。这个错误通常发生在尝试使用Groth16协议生成证明时,特别是在处理多项式计算和信号分配的电路中。
典型错误场景
一个典型的案例是开发者设计了一个基于Shamir秘密共享方案的电路,该电路需要证明用户知道一个秘密和多项式系数,并能正确计算出各参与方的份额。电路编译和见证生成阶段都能正常通过,但在执行snarkjs groth16 prove命令时却抛出上述错误。
错误根源分析
这个错误的根本原因在于Circom编译器对电路进行了优化简化。当开发者使用变量(var)进行中间计算,然后将结果赋值给信号(signal)时,编译器可能会将这些看似冗余的约束优化掉。然而,零知识证明系统需要完整的约束关系来确保计算的正确性。
在示例电路中,开发者使用eval变量累积多项式计算结果,然后将其赋值给shares信号数组。这种写法虽然逻辑正确,但由于缺乏显式的约束关系,导致证明系统无法正确验证计算的合法性。
解决方案
正确的做法是将所有中间计算过程都转换为信号操作,确保生成完整的约束系统。对于多项式计算,应该:
- 避免使用普通变量进行中间结果存储
- 将每一步计算都表示为信号间的约束关系
- 显式地声明所有中间信号
对于秘密共享电路,应该重构为使用信号数组来存储中间计算结果,而不是使用临时变量。这样可以确保编译器不会优化掉必要的约束。
更广泛的启示
这个问题不仅限于秘密共享电路,在开发任何需要复杂计算的Circom电路时都应该注意:
- 理解Circom的简化优化机制
- 明确区分变量(var)和信号(signal)的使用场景
- 对于需要生成证明的计算,必须确保所有步骤都有对应的约束
- 在复杂计算中,考虑将中间结果分解为多个信号
验证方法
开发者可以通过以下方式验证电路是否正确生成了所有必要约束:
- 检查生成的R1CS约束数量是否符合预期
- 使用不同的输入测试见证生成
- 在简单电路上逐步增加复杂度,观察约束系统的变化
总结
"Scalar size does not match"错误提醒我们,在零知识电路开发中,不仅要关注逻辑正确性,还需要理解底层证明系统的工作机制。通过合理使用信号和约束,可以构建出既高效又安全的零知识证明电路。对于多项式计算等复杂操作,应该特别注意中间结果的表示方式,确保生成完整的约束系统。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00