如何在Ragas项目中自定义Faithfulness评估指标的提示词
2025-05-26 00:21:22作者:凤尚柏Louis
背景介绍
Ragas是一个用于评估检索增强生成(RAG)系统性能的开源框架。其中Faithfulness(忠实度)指标用于衡量生成答案与提供上下文之间的一致性程度。在实际应用中,开发者可能需要根据特定需求修改默认的评估提示词(prompt)。
Faithfulness评估流程解析
Ragas的Faithfulness评估采用两阶段处理流程:
- 语句分解阶段:将生成的答案分解为多个独立可验证的简单陈述
- 验证阶段:判断每个简单陈述是否能从上下文中直接推断出来
这种两阶段设计确保了评估的细粒度和准确性,但同时也意味着自定义提示词时需要同时考虑两个阶段的提示词结构。
自定义提示词的正确方法
在Ragas中自定义Faithfulness提示词的正确方式是通过Faithfulness
类的prompt管理接口:
from ragas.metrics import Faithfulness
# 初始化评估器
scorer = Faithfulness(llm=evaluator_llm)
# 获取当前prompt配置
prompts = scorer.get_prompts()
# 修改statement生成prompt
statement_prompt = prompts["statement_generator_prompt"]
statement_prompt.instruction = "自定义的语句分解指令"
statement_prompt.examples = [...] # 自定义示例
# 修改NLI验证prompt
nli_prompt = prompts["n_l_i_statement_prompt"]
nli_prompt.instruction = "自定义的验证指令"
nli_prompt.examples = [...] # 自定义示例
# 应用修改后的prompt
scorer.set_prompts(
statement_generator_prompt=statement_prompt,
n_l_i_statement_prompt=nli_prompt
)
关键注意事项
- 保持输出格式一致:自定义prompt时需要确保输出格式与原始prompt相同,否则会导致解析错误
- 示例质量:提供的示例应清晰展示期望的输入输出关系
- 指令明确性:指令应明确说明任务要求和期望的输出格式
- 两阶段协调:两个阶段的prompt修改需要保持逻辑一致性
实际应用建议
对于需要高度定制化的场景,建议:
- 先理解原始prompt的结构和评估逻辑
- 在小样本上测试修改后的prompt效果
- 逐步调整,避免同时修改过多内容
- 保留原始prompt作为备份
通过这种结构化的自定义方法,开发者可以在保持评估框架完整性的同时,使Faithfulness指标更好地适应特定领域或应用场景的需求。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++032Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0280Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程视频测验中的Tab键导航问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp音乐播放器项目中的函数调用问题解析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析7 freeCodeCamp课程页面空白问题的技术分析与解决方案8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
160
2.02 K

deepin linux kernel
C
22
6

Ascend Extension for PyTorch
Python
42
75

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
529
55

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
946
556

React Native鸿蒙化仓库
C++
197
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
996
396

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
372
13

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71