VOODOO 3D 安装与使用指南
2024-09-12 05:15:20作者:侯霆垣
项目概述
VOODOO 3D 是一个高保真度的一次性头部重演技术,其主要功能是将驱动者的表情转移到源图像上,并产生适用于全息显示的视图一致渲染结果。该技术基于论文“VOODOO 3D: Volumetric Portrait Disentanglement for One-Shot 3D Head Reenactment”,并提供了官方实现。
1. 目录结构及介绍
以下是VOODOO3D-official项目的基本目录结构和每个部分的简介:
VOODOO3D-official/
├── additional_modules # 可能包含额外的模块或工具
├── configs # 配置文件夹,存储模型运行所需的配置参数
│ └── voodoo3d.yml # VOODOO 3D 的配置文件
│ └── lp3d.yml # 用于Lp3D模型的配置文件
├── data_preprocessing # 数据预处理相关代码或说明
├── dnnlib # 深度学习网络相关的库
├── models # 网络模型定义
├── pretrained_models # 预训练模型存放位置
│ └── voodoo3d.pth # 主模型的预训练权重
├── rendering # 渲染相关代码
├── resources # 资源文件,包括测试用的图片等
│ ├── images # 示例图片存放
└── ...
├── torch_utils # PyTorch实用函数
├── utils # 其他辅助工具函数
├── LICENSE # 许可证文件
├── README.md # 项目说明文档
├── requirements.txt # 必需的Python包列表
├── test.sh # 可能是测试脚本(未在给定信息中明确)
├── test_lp3d.py # 用于执行Lp3D的测试脚本
└── test_voodoo3d.py # 测试VOODOO 3D模型的脚本
2. 项目的启动文件介绍
主要运行脚本:test_voodoo3d.py 和 test_lp3d.py
- test_voodoo3d.py:此脚本用于测试VOODOO 3D模型,它接收源图片和驱动图片的路径,以及配置文件和保存结果的路径,进行一次性的头部重演。
- test_lp3d.py:这个脚本用于评估模型在3D重建上的性能,特别是当使用了VOODOO 3D中的某些组件进行过微调时。
3. 项目的配置文件介绍
voodoo3d.yml: 此配置文件包含了VOODOO 3D模型运行的具体设置,如模型的架构细节、训练时使用的超参数、输入输出规格等。lp3d.yml: 若项目中有使用或调整Lp3D模型,则这个配置文件记录了Lp3D模型的相关参数配置,可能涉及模型的前向传播设定、优化器配置等。
如何配置与使用
-
安装依赖:首先,通过以下命令克隆项目并创建conda环境安装必要的库。
git clone https://github.com/mbzuai-metaverse/VOODOO3D-official conda create -n voodoo3d python=3.10 pytorch=2.3.0 torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia pip install -r requirements.txt -
准备模型权重:下载所需的预训练模型权重放入
pretrained_models目录中。 -
运行测试:
- 对于VOODOO 3D模型,运行下面的命令:
python test_voodoo3d.py \ --source_root 路径/到/源图片 \ --driver_root 路径/到/驱动图片 \ --config_path configs/voodoo3d.yml \ --model_path pretrained_models/voodoo3d.pth \ --save_root 结果保存路径 - 若要使用Lp3D模型进行3D重建,可使用:
python test_lp3d.py \ --source_root 图片源路径 \ --config_path configs/lp3d.yml \ --model_path pretrained_models/voodoo3d.pth \ --save_root 结果保存路径 \ --cam_batch_size 批大小
- 对于VOODOO 3D模型,运行下面的命令:
确保替换上述命令中的占位符(如路径)以符合实际的文件布局。通过以上步骤,你可以开始利用VOODOO 3D项目来执行复杂的头像重演任务。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355