VOODOO 3D 安装与使用指南
2024-09-12 07:11:03作者:侯霆垣
项目概述
VOODOO 3D 是一个高保真度的一次性头部重演技术,其主要功能是将驱动者的表情转移到源图像上,并产生适用于全息显示的视图一致渲染结果。该技术基于论文“VOODOO 3D: Volumetric Portrait Disentanglement for One-Shot 3D Head Reenactment”,并提供了官方实现。
1. 目录结构及介绍
以下是VOODOO3D-official项目的基本目录结构和每个部分的简介:
VOODOO3D-official/
├── additional_modules # 可能包含额外的模块或工具
├── configs # 配置文件夹,存储模型运行所需的配置参数
│ └── voodoo3d.yml # VOODOO 3D 的配置文件
│ └── lp3d.yml # 用于Lp3D模型的配置文件
├── data_preprocessing # 数据预处理相关代码或说明
├── dnnlib # 深度学习网络相关的库
├── models # 网络模型定义
├── pretrained_models # 预训练模型存放位置
│ └── voodoo3d.pth # 主模型的预训练权重
├── rendering # 渲染相关代码
├── resources # 资源文件,包括测试用的图片等
│ ├── images # 示例图片存放
└── ...
├── torch_utils # PyTorch实用函数
├── utils # 其他辅助工具函数
├── LICENSE # 许可证文件
├── README.md # 项目说明文档
├── requirements.txt # 必需的Python包列表
├── test.sh # 可能是测试脚本(未在给定信息中明确)
├── test_lp3d.py # 用于执行Lp3D的测试脚本
└── test_voodoo3d.py # 测试VOODOO 3D模型的脚本
2. 项目的启动文件介绍
主要运行脚本:test_voodoo3d.py 和 test_lp3d.py
- test_voodoo3d.py:此脚本用于测试VOODOO 3D模型,它接收源图片和驱动图片的路径,以及配置文件和保存结果的路径,进行一次性的头部重演。
- test_lp3d.py:这个脚本用于评估模型在3D重建上的性能,特别是当使用了VOODOO 3D中的某些组件进行过微调时。
3. 项目的配置文件介绍
voodoo3d.yml: 此配置文件包含了VOODOO 3D模型运行的具体设置,如模型的架构细节、训练时使用的超参数、输入输出规格等。lp3d.yml: 若项目中有使用或调整Lp3D模型,则这个配置文件记录了Lp3D模型的相关参数配置,可能涉及模型的前向传播设定、优化器配置等。
如何配置与使用
-
安装依赖:首先,通过以下命令克隆项目并创建conda环境安装必要的库。
git clone https://github.com/mbzuai-metaverse/VOODOO3D-official conda create -n voodoo3d python=3.10 pytorch=2.3.0 torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia pip install -r requirements.txt -
准备模型权重:下载所需的预训练模型权重放入
pretrained_models目录中。 -
运行测试:
- 对于VOODOO 3D模型,运行下面的命令:
python test_voodoo3d.py \ --source_root 路径/到/源图片 \ --driver_root 路径/到/驱动图片 \ --config_path configs/voodoo3d.yml \ --model_path pretrained_models/voodoo3d.pth \ --save_root 结果保存路径 - 若要使用Lp3D模型进行3D重建,可使用:
python test_lp3d.py \ --source_root 图片源路径 \ --config_path configs/lp3d.yml \ --model_path pretrained_models/voodoo3d.pth \ --save_root 结果保存路径 \ --cam_batch_size 批大小
- 对于VOODOO 3D模型,运行下面的命令:
确保替换上述命令中的占位符(如路径)以符合实际的文件布局。通过以上步骤,你可以开始利用VOODOO 3D项目来执行复杂的头像重演任务。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementPersist and reuse KV Cache to speedup your LLM.Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
283
2.59 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
225
303
暂无简介
Dart
572
127
Ascend Extension for PyTorch
Python
109
139
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
602
171
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
仓颉编译器源码及 cjdb 调试工具。
C++
120
186
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205