VOODOO 3D 安装与使用指南
2024-09-12 07:11:03作者:侯霆垣
项目概述
VOODOO 3D 是一个高保真度的一次性头部重演技术,其主要功能是将驱动者的表情转移到源图像上,并产生适用于全息显示的视图一致渲染结果。该技术基于论文“VOODOO 3D: Volumetric Portrait Disentanglement for One-Shot 3D Head Reenactment”,并提供了官方实现。
1. 目录结构及介绍
以下是VOODOO3D-official
项目的基本目录结构和每个部分的简介:
VOODOO3D-official/
├── additional_modules # 可能包含额外的模块或工具
├── configs # 配置文件夹,存储模型运行所需的配置参数
│ └── voodoo3d.yml # VOODOO 3D 的配置文件
│ └── lp3d.yml # 用于Lp3D模型的配置文件
├── data_preprocessing # 数据预处理相关代码或说明
├── dnnlib # 深度学习网络相关的库
├── models # 网络模型定义
├── pretrained_models # 预训练模型存放位置
│ └── voodoo3d.pth # 主模型的预训练权重
├── rendering # 渲染相关代码
├── resources # 资源文件,包括测试用的图片等
│ ├── images # 示例图片存放
└── ...
├── torch_utils # PyTorch实用函数
├── utils # 其他辅助工具函数
├── LICENSE # 许可证文件
├── README.md # 项目说明文档
├── requirements.txt # 必需的Python包列表
├── test.sh # 可能是测试脚本(未在给定信息中明确)
├── test_lp3d.py # 用于执行Lp3D的测试脚本
└── test_voodoo3d.py # 测试VOODOO 3D模型的脚本
2. 项目的启动文件介绍
主要运行脚本:test_voodoo3d.py
和 test_lp3d.py
- test_voodoo3d.py:此脚本用于测试VOODOO 3D模型,它接收源图片和驱动图片的路径,以及配置文件和保存结果的路径,进行一次性的头部重演。
- test_lp3d.py:这个脚本用于评估模型在3D重建上的性能,特别是当使用了VOODOO 3D中的某些组件进行过微调时。
3. 项目的配置文件介绍
voodoo3d.yml
: 此配置文件包含了VOODOO 3D模型运行的具体设置,如模型的架构细节、训练时使用的超参数、输入输出规格等。lp3d.yml
: 若项目中有使用或调整Lp3D模型,则这个配置文件记录了Lp3D模型的相关参数配置,可能涉及模型的前向传播设定、优化器配置等。
如何配置与使用
-
安装依赖:首先,通过以下命令克隆项目并创建conda环境安装必要的库。
git clone https://github.com/mbzuai-metaverse/VOODOO3D-official conda create -n voodoo3d python=3.10 pytorch=2.3.0 torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia pip install -r requirements.txt
-
准备模型权重:下载所需的预训练模型权重放入
pretrained_models
目录中。 -
运行测试:
- 对于VOODOO 3D模型,运行下面的命令:
python test_voodoo3d.py \ --source_root 路径/到/源图片 \ --driver_root 路径/到/驱动图片 \ --config_path configs/voodoo3d.yml \ --model_path pretrained_models/voodoo3d.pth \ --save_root 结果保存路径
- 若要使用Lp3D模型进行3D重建,可使用:
python test_lp3d.py \ --source_root 图片源路径 \ --config_path configs/lp3d.yml \ --model_path pretrained_models/voodoo3d.pth \ --save_root 结果保存路径 \ --cam_batch_size 批大小
- 对于VOODOO 3D模型,运行下面的命令:
确保替换上述命令中的占位符(如路径)以符合实际的文件布局。通过以上步骤,你可以开始利用VOODOO 3D项目来执行复杂的头像重演任务。
登录后查看全文
热门项目推荐
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息010GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java01Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
152
1.97 K

deepin linux kernel
C
22
6

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
486
37

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
315
10

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
191

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
991
395

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
193
276

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
937
554

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
69