Apache Druid 实时查询中的段缺失异常分析与解决方案
背景介绍
Apache Druid 是一个高性能的实时分析数据库,广泛应用于实时数据摄取和分析场景。在 Druid 的实时数据摄取过程中,数据首先被写入内存中的增量段(IncrementalSegment),然后定期持久化到磁盘。这一过程涉及段的生命周期管理,包括段的创建、宣布和查询处理等关键环节。
问题现象
在 Druid 31.0.1 版本中,用户报告了一个关于实时查询的异常情况:当查询命中刚刚宣布但尚未完全初始化的实时增量段时,系统会抛出 SegmentMissingException 异常。这种情况发生在段宣布(announce)和段添加到时间线(sinkTimeline)之间存在的时间窗口内。
问题分析
核心流程时序问题
在 StreamAppenderator 类的 getOrCreateSink 方法中,当前实现存在以下时序:
- 创建新的 Sink 对象
- 宣布段(segmentAnnouncer.announceSegment)
- 将段添加到 sinks 映射表
- 将段添加到 sinkTimeline
这种时序安排导致了一个竞态条件:在段被宣布后但尚未添加到 sinkTimeline 前,查询就可能到达并尝试访问该段。由于 sinkTimeline 中尚未包含该段,查询处理逻辑会认为段缺失并抛出异常。
日志证据分析
从用户提供的日志中可以清晰看到问题发生的时序:
- 03:37:47,669 - 开始宣布段
- 03:37:47,685 - 段宣布完成
- 03:37:51,820 - 查询到达并发现段缺失
- 03:37:52,103 - 开始将段添加到 sinkTimeline
- 03:37:52,116 - 段添加完成
从宣布完成到添加到时间线之间有超过4秒的间隔,这期间到达的查询都会失败。
技术影响
这种竞态条件会导致以下问题:
- 查询结果不完整:由于部分段未被包含在查询中,结果可能缺失最新数据
- 用户体验下降:用户会看到间歇性的查询失败
- 系统可靠性降低:自动重试机制可能无法有效解决此问题,因为重试通常没有足够的延迟
解决方案
修复思路
最直接的解决方案是调整操作顺序,确保在宣布段之前先完成所有必要的初始化工作:
- 创建新的 Sink 对象
- 将段添加到 sinks 映射表
- 将段添加到 sinkTimeline
- 宣布段
这种顺序可以确保在段对外可见(宣布)之前,所有查询处理所需的内部状态都已准备就绪。
实现细节
在代码实现上,需要:
- 将 sinkTimeline.add 调用移到 segmentAnnouncer.announceSegment 之前
- 确保所有相关的内部数据结构都已更新
- 保持原子性操作,避免在调整顺序后引入新的竞态条件
重试机制优化
虽然调整顺序是根本解决方案,但也可以考虑增强重试机制:
- 增加适当的延迟和退避策略
- 对于已知的临时性段缺失情况,提供更智能的重试逻辑
- 在客户端实现更健壮的错误处理
验证与测试
验证此修复需要:
- 单元测试:验证新的操作顺序在各种边界条件下的行为
- 集成测试:模拟高负载场景下的段创建和查询竞争
- 性能测试:确保顺序调整不会引入明显的性能开销
总结
Apache Druid 中实时查询处理与段生命周期管理之间的竞态条件是一个典型的分布式系统时序问题。通过调整内部操作顺序,可以有效地消除这种竞态条件,提高系统的可靠性和一致性。这一修复不仅解决了特定的异常情况,也体现了在分布式系统设计中状态可见性与内部一致性之间平衡的重要性。
对于使用 Druid 实时摄取功能的用户,建议关注此问题的修复版本,并在升级后验证实时查询的稳定性是否得到改善。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C032
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00