Open Data Catalog 技术文档
本文档旨在帮助用户快速了解和使用 Open Data Catalog 项目。文档内容包括安装指南、使用说明、API 使用文档以及项目安装方式。
1. 安装指南
1.1 环境准备
在开始安装之前,请确保您的开发环境已准备好以下工具:
- VirtualBox:用于创建虚拟机。
- Ubuntu 12.04:作为 Linux 虚拟机的基础操作系统。
1.2 安装非 Python 依赖
在 Ubuntu 系统中,首先需要安装一些非 Python 依赖项:
sudo apt-get update
sudo apt-get install git sendmail postgresql python postgresql-plpython-9.1 python-pip libpq-dev python-dev libxml2-dev libxslt1-dev libgeos-c1 mercurial meld
1.3 安装 Python 依赖
接下来,安装 Python 的虚拟环境工具 virtualenv
:
sudo pip install virtualenv
2. 项目的使用说明
2.1 创建虚拟环境
首先,创建一个虚拟环境并激活它:
virtualenv opendatacatalog
cd opendatacatalog
source bin/activate
2.2 获取源代码
从 GitHub 上获取 Open Data Catalog 的源代码:
git clone git://github.com/azavea/Open-Data-Catalog.git
cd Open-Data-Catalog
2.3 安装 Python 依赖并完成设置
安装项目所需的 Python 依赖项,并完成一些基本设置:
pip install -r requirements.txt
cd OpenDataCatalog
mkdir media
chmod 755 media
ln -s ../../lib/python2.7/site-packages/django/contrib/admin admin_media
3. 项目 API 使用文档
Open Data Catalog 支持 OGC Catalogue Service (CSW) 规范,使用 pycsw
实现。CSW 设置可以在 settings.CSW
中进行配置。此外,settings.SITEHOST
和 settings.SITEPORT
必须根据您的部署环境进行设置。
4. 项目安装方式
4.1 设置数据库
首先,创建一个新的 PostgreSQL 数据库:
sudo su postgres
createuser -P odc-user
psql template1 -c "CREATE DATABASE opendata OWNER \"odc-user\";"
createlang plpythonu opendata
psql -d opendata -f etc/pycsw_plpythonu.sql
exit
4.2 更新设置
复制 local_settings.py.example
文件并重命名为 local_settings.py
,然后更新数据库设置:
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'opendata',
'USER': 'odc-user',
'PASSWORD': 'PASSWORD',
'HOST': 'localhost',
'PORT': '',
}
}
4.3 创建数据库模式
使用 Django 的 syncdb
命令创建数据库模式:
python manage.py syncdb --migrate
4.4 运行服务器
启动 gunicorn
服务器:
gunicorn_django
4.5 自定义安装
您可以通过修改 local_settings.py
文件中的配置值来自定义安装,例如 TWITTER_USER
和 SITE_ROOT
。此外,您还可以通过指定 LOCAL_TEMPLATE_DIR
来更改项目的样式。
4.6 部署到 Heroku
要将项目部署到 Heroku,请按照以下步骤操作:
- 编辑
.gitignore
文件,删除local_settings.py
这一行。 - 安装 Heroku CLI:
sudo gem install heroku
- 创建 Heroku 应用并部署代码:
heroku create --stack cedar --buildpack https://github.com/cirlabs/heroku-buildpack-geodjango/
git push heroku master
heroku run python OpenDataCatalog/manage.py syncdb
4.7 使用 Apache 部署
Django 也可以通过 mod_wsgi
在 Apache 上运行。在 Apache 配置文件中添加以下内容:
WSGIScriptAlias /hidden /<project location>/odp.wsgi
Alias /media /<project location>/media
Alias /static /<project location>/static
创建 odp.wsgi
文件并添加以下内容:
import os, sys
sys.path.insert(0, '/home/azavea/NPower_OpenDataPhilly')
import settings
import django.core.management
django.core.management.setup_environ(settings)
utility = django.core.management.ManagementUtility()
command = utility.fetch_command('runserver')
command.validate()
import django.conf
import django.utils
django.utils.translation.activate(django.conf.settings.LANGUAGE_CODE)
import django.core.handlers.wsgi
application = django.core.handlers.wsgi.WSGIHandler()
通过以上步骤,您应该能够成功安装、配置并运行 Open Data Catalog 项目。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









