AWS Deep Learning Containers发布PyTorch 2.4.0 Graviton CPU推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,它集成了主流深度学习框架和必要的依赖库,帮助开发者快速部署深度学习应用。这些容器镜像经过优化,可以在AWS的各种计算实例上高效运行,包括基于Arm架构的Graviton处理器实例。
近日,AWS Deep Learning Containers项目发布了针对Graviton处理器的PyTorch 2.4.0 CPU推理镜像。这个新版本基于Ubuntu 22.04操作系统,使用Python 3.11作为默认Python环境,专为EC2实例上的推理任务优化。
镜像技术细节
这个PyTorch推理镜像包含了完整的PyTorch 2.4.0生态系统,主要组件包括:
- PyTorch核心库:2.4.0+cpu版本,针对Graviton处理器进行了优化
- TorchVision:0.19.0+cpu版本,提供计算机视觉相关功能
- TorchAudio:2.4.0+cpu版本,支持音频处理任务
- TorchServe和Torch-Model-Archiver:0.12.0版本,用于模型服务和打包
镜像中还预装了常用的Python科学计算和数据处理的库,如NumPy 1.26.4、SciPy 1.14.1、OpenCV-Python 4.10.0.84等,这些库都针对Graviton处理器进行了编译优化。
环境配置
该镜像基于Ubuntu 22.04操作系统构建,包含了完整的开发环境:
- GCC 10和11开发工具链
- C++标准库开发文件
- Emacs编辑器(可选)
- Python 3.11作为默认Python环境
镜像中预装的Python包管理器pip已经配置了必要的依赖关系,开发者可以直接使用这些预装的库进行模型推理,无需额外安装。
使用场景
这个PyTorch Graviton CPU推理镜像特别适合以下场景:
- 成本敏感的推理任务:Graviton处理器通常比同级别的x86实例提供更高的性价比
- 边缘计算场景:Arm架构的低功耗特性适合边缘设备部署
- 批处理推理任务:不需要GPU加速的中小型模型推理
- 开发测试环境:快速搭建PyTorch开发环境进行模型验证
性能优化
AWS对镜像中的PyTorch和相关库进行了针对Graviton处理器的优化,包括:
- 使用Arm架构优化的BLAS库
- 多线程并行计算优化
- 内存访问模式优化
- 指令集级别的性能调优
这些优化使得PyTorch模型在Graviton处理器上能够获得接近甚至超过同级别x86实例的性能表现。
总结
AWS Deep Learning Containers发布的这个PyTorch 2.4.0 Graviton CPU推理镜像,为开发者提供了一个开箱即用的高效推理环境。它结合了PyTorch最新版本的特性、Graviton处理器的成本优势以及AWS的专业优化,是部署PyTorch推理服务的理想选择。对于已经在使用PyTorch的团队,可以无缝迁移到Graviton实例上,获得更好的性价比。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00