【亲测免费】 PoreSpy: 三维多孔材料图像分析工具包
项目介绍
PoreSpy 是一个专为提取和分析三维多孔材料图像信息设计的Python工具集。它主要用于处理通过X射线断层扫描获得的多孔介质图像。不同于一般的图像分析软件(如Scikit-image、SciPy的ndimage模块或ImageJ),PoreSpy专注于提供一套专门为多孔材料分析定制的功能。这些功能无需从基础脚本构建,而是以预定义函数的形式存在,简化了复杂度,如一键执行模拟汞侵入测试(例如 porespy.filters.porosimetry)。
项目快速启动
要开始使用PoreSpy,首先确保你的开发环境已经安装了必要的Python依赖项。接下来,通过以下步骤安装PoreSpy:
pip install porespy
示例代码片段
创建并展示一个简单的二维多孔材料图像:
import porespy as ps
import matplotlib.pyplot as plt
# 生成一个示例图像
im = ps.generators.blobs(shape=[500, 500], porosity=0.6, blobiness=2)
plt.imshow(im)
plt.show()
应用案例和最佳实践
生成人工图像与滤波操作
在多孔材料研究中,经常需要对图像进行滤波来获取特定属性。下面演示如何使用PoreSpy中的局部厚度计算来分析图像:
lt = ps.filters.local_thickness(im)
plt.imshow(lt)
plt.show()
计算与展示指标
PoreSpy不仅限于图像处理,还能帮助计算物理量,比如通过两点相关函数分析孔隙结构:
data = ps.metrics.two_point_correlation_fft(im)
fig = plt.plot(*data, 'bo-')
plt.xlabel('相关长度 [像素]')
plt.ylabel('概率')
plt.show()
典型生态项目
虽然PoreSpy本身就是一个独立的库,其在多孔材料科学领域内的应用可以视为一个生态系统的中心部分。开发者和研究人员通常结合使用PoreSpy与其他数据处理(如NumPy、SciPy)、可视化(matplotlib)、以及机器学习库(例如TensorFlow或PyTorch),来实现更复杂的分析和模型建立。
在多孔材料的研究和工业应用中,PoreSpy经常被用于辅助材料科学的前沿研究,包括但不限于能源储存材料的性能评估、地质分析、生物医学成像中的组织结构分析等场景。社区内分享的案例和论文常常展示了PoreSpy是如何被集成进这些复杂的应用场景,从而推动了跨学科的合作和技术进步。
以上就是关于PoreSpy的基本介绍、快速启动指南、一些应用实例以及简述其在多孔材料分析领域的生态系统地位。通过实际项目实践,研究者能够深入理解和利用PoreSpy的强大功能,进一步探索多孔介质的奥秘。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin06
compass-metrics-modelMetrics model project for the OSS CompassPython00