Mill项目升级至0.12.7版本时遇到的构建崩溃问题分析
在Mill构建工具从0.12.4升级到0.12.7版本的过程中,一些用户遇到了构建崩溃的问题。这个问题主要与依赖解析机制的变更有关,表现为构建过程中无法正确解析某些模块依赖。
问题现象
用户在升级后遇到的主要错误信息显示依赖解析失败,提示"Resolution failed for 1 modules"并指出找不到特定的测试覆盖。错误信息中还提到了"Not an internal Mill module"的提示,表明Mill无法正确识别和处理某些内部模块。
问题根源
经过分析,这个问题主要源于两个方面的原因:
-
依赖解析机制的重大变更:Mill在0.12.7版本中对依赖解析系统进行了重大改进,这可能导致之前一些依赖配置方式不再适用。
-
repositoriesTask覆盖问题:部分用户在模块中覆盖了repositoriesTask方法但没有正确调用父类的实现,这在新版本的依赖解析机制下会导致问题。
解决方案
针对这个问题,开发团队已经提供了几种解决方案:
-
正确覆盖repositoriesTask:当需要在模块中自定义仓库时,应该确保调用super.repositoriesTask()并合并结果,而不是完全覆盖它。
-
升级到修复版本:开发团队已经在0.12.8-9-95f1fe版本中修复了这个问题,建议用户升级到这个修复版本。
最佳实践建议
为了避免类似问题,建议开发者在自定义Mill构建时遵循以下实践:
-
在覆盖任何核心方法时,特别是与依赖解析相关的方法,应该首先调用父类实现并适当扩展,而不是完全替换。
-
升级Mill版本时,应该先在测试环境中验证构建是否正常,特别是当升级涉及主版本或包含重大变更时。
-
对于复杂的多模块项目,建议逐步升级和测试,而不是一次性升级所有模块。
总结
Mill作为Scala生态系统中的重要构建工具,其版本升级有时会引入一些兼容性问题。通过理解依赖解析机制的工作原理和遵循最佳实践,开发者可以更顺利地完成版本迁移。对于遇到类似问题的用户,建议首先尝试升级到包含修复的版本,或者按照本文提到的方法调整自定义的仓库配置。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00