基于RLHF_in_notebooks项目的监督微调(SFT)实战指南
2025-07-08 06:34:16作者:秋阔奎Evelyn
什么是监督微调(SFT)
监督微调(Supervised Fine-Tuning)是强化学习人类反馈(RLHF)训练流程中的第一步关键环节。在RLHF框架中,SFT的主要作用是对预训练语言模型进行初步调整,使其更好地适应特定任务或领域。
环境准备
在开始SFT之前,我们需要准备以下组件:
- 基础模型:通常选择预训练好的语言模型,如GPT-2
- 数据集:用于微调的训练数据
- 分词器:与模型配套的分词工具
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = 'gpt2'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
分词器使用详解
基础分词操作
分词器是NLP处理中的关键组件,它将原始文本转换为模型可以理解的数字序列:
text = "Hello, this is the first step of RLHF training."
tokens = tokenizer(text)
print(tokens)
批量处理
实际应用中,我们通常需要处理批量文本:
texts = ['Hello, this is the first step of RLHF training.',
'I have a dog',
'I also have a cat']
tokens_obj = tokenizer(texts)
数据集处理实战
加载标准数据集
我们使用SST-2(Stanford Sentiment Treebank)数据集作为示例:
from datasets import load_dataset
dataset_name = 'sst2'
ds = load_dataset(dataset_name)
数据集分割
将数据集划分为训练集和验证集是标准做法:
ds_train, ds_val = ds['train'], ds['validation']
数据集批处理
批处理可以显著提高训练效率:
# 获取前10个样本
ds_train[:10]
数据集分词处理
自定义分词函数
我们需要为数据集创建专门的分词函数:
def tokenize(batch):
return tokenizer(batch['sentence'])
应用分词处理
使用map函数高效处理整个数据集:
map_kwargs = {
'batched': True,
'batch_size': 512,
'remove_columns': ['idx', 'sentence', 'label']
}
tokenized_dataset_train = ds_train.map(tokenize, **map_kwargs)
tokenized_dataset_val = ds_val.map(tokenize, **map_kwargs)
数据过滤
过滤掉过短的样本可以提高训练质量:
tokenized_dataset_train = tokenized_dataset_train.filter(lambda x: len(x['input_ids']) > 5)
tokenized_dataset_val = tokenized_dataset_val.filter(lambda x: len(x['input_ids']) > 5)
数据加载器准备
设置PyTorch格式
将数据集转换为PyTorch张量格式:
tokenized_dataset_train.set_format(type='torch')
tokenized_dataset_val.set_format(type='torch')
填充(Padding)处理
处理变长序列是NLP中的常见需求:
# 检查填充token设置
print(tokenizer.pad_token)
# 使用EOS token作为填充token
tokenizer.pad_token = tokenizer.eos_token
关键技巧与注意事项
-
批量大小选择:根据GPU内存合理设置batch_size,通常从32或64开始尝试
-
序列长度过滤:过滤过短序列可以避免训练不稳定,但阈值需要根据任务调整
-
填充策略:使用EOS token作为填充token是常见做法,但要注意在计算损失时忽略填充部分
-
验证集重要性:始终保留验证集用于监控模型性能,防止过拟合
-
硬件考量:对于大型模型,可能需要使用梯度累积等技术来模拟更大的batch size
总结
监督微调是RLHF流程中至关重要的第一步。通过本教程,我们系统性地学习了如何:
- 初始化预训练模型和分词器
- 加载和处理文本数据集
- 实现高效的分词和批处理流程
- 准备适合模型训练的数据加载器
这些基础工作为后续的强化学习人类反馈阶段奠定了坚实基础。在实际应用中,可能需要根据具体任务调整数据处理细节,但核心流程保持一致。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
54
469

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
879
518

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
180
264

一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
359
381

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60