基于RLHF_in_notebooks项目的监督微调(SFT)实战指南
2025-07-08 08:17:49作者:秋阔奎Evelyn
什么是监督微调(SFT)
监督微调(Supervised Fine-Tuning)是强化学习人类反馈(RLHF)训练流程中的第一步关键环节。在RLHF框架中,SFT的主要作用是对预训练语言模型进行初步调整,使其更好地适应特定任务或领域。
环境准备
在开始SFT之前,我们需要准备以下组件:
- 基础模型:通常选择预训练好的语言模型,如GPT-2
- 数据集:用于微调的训练数据
- 分词器:与模型配套的分词工具
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = 'gpt2'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
分词器使用详解
基础分词操作
分词器是NLP处理中的关键组件,它将原始文本转换为模型可以理解的数字序列:
text = "Hello, this is the first step of RLHF training."
tokens = tokenizer(text)
print(tokens)
批量处理
实际应用中,我们通常需要处理批量文本:
texts = ['Hello, this is the first step of RLHF training.',
'I have a dog',
'I also have a cat']
tokens_obj = tokenizer(texts)
数据集处理实战
加载标准数据集
我们使用SST-2(Stanford Sentiment Treebank)数据集作为示例:
from datasets import load_dataset
dataset_name = 'sst2'
ds = load_dataset(dataset_name)
数据集分割
将数据集划分为训练集和验证集是标准做法:
ds_train, ds_val = ds['train'], ds['validation']
数据集批处理
批处理可以显著提高训练效率:
# 获取前10个样本
ds_train[:10]
数据集分词处理
自定义分词函数
我们需要为数据集创建专门的分词函数:
def tokenize(batch):
return tokenizer(batch['sentence'])
应用分词处理
使用map函数高效处理整个数据集:
map_kwargs = {
'batched': True,
'batch_size': 512,
'remove_columns': ['idx', 'sentence', 'label']
}
tokenized_dataset_train = ds_train.map(tokenize, **map_kwargs)
tokenized_dataset_val = ds_val.map(tokenize, **map_kwargs)
数据过滤
过滤掉过短的样本可以提高训练质量:
tokenized_dataset_train = tokenized_dataset_train.filter(lambda x: len(x['input_ids']) > 5)
tokenized_dataset_val = tokenized_dataset_val.filter(lambda x: len(x['input_ids']) > 5)
数据加载器准备
设置PyTorch格式
将数据集转换为PyTorch张量格式:
tokenized_dataset_train.set_format(type='torch')
tokenized_dataset_val.set_format(type='torch')
填充(Padding)处理
处理变长序列是NLP中的常见需求:
# 检查填充token设置
print(tokenizer.pad_token)
# 使用EOS token作为填充token
tokenizer.pad_token = tokenizer.eos_token
关键技巧与注意事项
-
批量大小选择:根据GPU内存合理设置batch_size,通常从32或64开始尝试
-
序列长度过滤:过滤过短序列可以避免训练不稳定,但阈值需要根据任务调整
-
填充策略:使用EOS token作为填充token是常见做法,但要注意在计算损失时忽略填充部分
-
验证集重要性:始终保留验证集用于监控模型性能,防止过拟合
-
硬件考量:对于大型模型,可能需要使用梯度累积等技术来模拟更大的batch size
总结
监督微调是RLHF流程中至关重要的第一步。通过本教程,我们系统性地学习了如何:
- 初始化预训练模型和分词器
- 加载和处理文本数据集
- 实现高效的分词和批处理流程
- 准备适合模型训练的数据加载器
这些基础工作为后续的强化学习人类反馈阶段奠定了坚实基础。在实际应用中,可能需要根据具体任务调整数据处理细节,但核心流程保持一致。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178