首页
/ 推荐文章:AdaptFormer:可扩展的视觉识别Transformer

推荐文章:AdaptFormer:可扩展的视觉识别Transformer

2024-05-23 18:00:39作者:廉彬冶Miranda

项目介绍

AdaptFormer是一项创新性的研究,它在NeurIPS 2022会议上发表,其目标是适应性地改进Vision Transformers以实现大规模的视觉识别任务。这个开源项目提供了PyTorch实现,使研究人员和开发者能够利用该算法进行视频和图像识别,其核心在于提升了Transformer模型的效率与可伸缩性。

项目技术分析

AdaptFormer建立在Masked Autoencoders(MAE)的基础上,并借鉴了VideoMAE、timm库和MAM等前沿成果。通过引入自适应FFN(Feed-Forward Network),该项目成功地优化了Transformer的计算效率,使其能在保持高性能的同时,有效处理大规模数据集。此外,它支持分布式训练,利用torch.distributed.launch工具可以轻松在多GPU环境下运行代码。

项目及技术应用场景

AdaptFormer的适用场景广泛,包括但不限于:

  1. 视频理解:适用于长时序列的视频分析,如动作识别、事件检测。
  2. 图像分类:在大型图像数据集上进行高效的分类任务。
  3. 计算机视觉应用开发:对于需要高效模型的移动设备或嵌入式系统,AdaptFormer的轻量级设计是一个理想选择。

项目特点

  1. 高效性能:通过自适应FFN,AdaptFormer实现了Transformer的性能提升,降低了对计算资源的需求。
  2. 高度可定制化:支持不同数据集的预处理,并提供灵活的超参数调整,适合各种研究需求。
  3. 易于部署:基于PyTorch框架,提供了清晰的训练脚本和指南,方便快速集成到现有项目中。
  4. 社区支持:源于已有的优秀项目,AdaptFormer有着坚实的基础和活跃的社区,不断更新和优化。

为了开始使用AdaptFormer,只需按照提供的README.md中的指引安装依赖项、准备数据并启动训练。无论是学术研究还是实际应用,AdaptFormer都是一个值得尝试的先进视觉识别工具。记得在使用后引用相关文献,为作者们的支持表示感谢!

@article{chen2022adaptformer,
      title={AdaptFormer: Adapting Vision Transformers for Scalable Visual Recognition},
      author={Chen, Shoufa and Ge, Chongjian and Tong, Zhan and Wang, Jiangliu and Song, Yibing and Wang, Jue and Luo, Ping},
      journal={arXiv preprint arXiv:2205.13535},
      year={2022}
}

点击此处访问项目主页,了解更多详情!

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cjmarkdown4cj
一个markdown解析和展示的库
Cangjie
10
1