LTESniffer项目构建中srsran_rf_recv_with_time_multi未定义引用的解决方案
在构建LTESniffer项目的多设备分支时,开发者可能会遇到一个典型的链接错误:undefined reference to 'srsran_rf_recv_with_time_multi'。这个问题通常发生在使用Ubuntu Noble系统并尝试构建LTESniffer的多设备支持版本时。
问题现象分析
当开发者按照常规流程构建项目时,构建过程会在链接阶段失败,报出多个未定义引用错误。这些错误主要集中在srsran_rf_recv_with_time_multi和srsran_rf_close等函数上。从错误信息可以看出,编译器能够找到这些函数的声明,但在链接时无法找到它们的实现。
根本原因
经过深入分析,这个问题主要源于两个关键因素:
-
系统UHD库版本不兼容:Ubuntu仓库提供的预编译UHD库版本可能与LTESniffer项目所需版本不匹配,特别是对于多设备支持功能。
-
依赖库不完整:项目构建需要一些额外的数学计算和安全相关的库支持,这些库在标准Ubuntu安装中可能未被包含。
完整解决方案
要彻底解决这个问题,需要执行以下步骤:
-
构建UHD驱动从源码:
- 从官方源获取最新UHD源码
- 按照标准流程配置、编译和安装
- 特别注意执行安装后的环境配置步骤
-
安装必要的依赖库:
- 数学计算库:
libfftw3-dev - 加密相关库:
libmbedtls-dev - 程序选项处理库:
libboost-program-options-dev - 配置文件处理库:
libconfig++-dev - 流控制传输协议库:
libsctp-dev
- 数学计算库:
-
正确设置构建环境:
- 使用gcc-11和g++-11工具链
- 确保构建目录结构正确
- 使用适当的并行编译参数
构建流程优化建议
为了确保构建过程顺利,建议采用以下优化后的流程:
- 准备干净的Ubuntu Noble系统环境
- 安装基础开发工具链
- 从源码构建并安装UHD驱动
- 安装所有必要的依赖库
- 克隆LTESniffer仓库并切换到多设备分支
- 创建专用构建目录
- 明确指定编译器版本
- 执行标准CMake构建流程
技术要点说明
srsran_rf_recv_with_time_multi函数是srsRAN项目中用于多设备同步接收的关键API。它在处理多USRP设备协同工作时负责:
- 从多个射频前端同步采集数据
- 保证采样时间戳的一致性
- 处理多通道间的时钟同步
因此,正确构建支持这一功能的底层驱动至关重要。从源码构建UHD可以确保所有必要的接口和功能都被正确编译和链接。
总结
通过从源码构建UHD驱动并确保所有依赖库完整安装,开发者可以成功解决LTESniffer多设备分支构建过程中的未定义引用问题。这一解决方案不仅适用于当前问题,也为处理类似的项目构建问题提供了参考思路。关键在于理解项目对底层驱动的特定需求,并确保开发环境完全满足这些需求。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00