AWS Deep Learning Containers发布PyTorch Graviton EC2推理容器v1.37
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,它集成了主流深度学习框架、工具和库,帮助开发者快速部署和运行深度学习工作负载。这些容器经过AWS优化,可以直接在Amazon EC2、Amazon ECS和Amazon EKS等服务上运行,大幅简化了深度学习环境的搭建过程。
近日,AWS DLC项目发布了针对Graviton处理器优化的PyTorch推理容器新版本v1.37。这个版本特别值得关注的是它专为基于ARM架构的AWS Graviton处理器进行了优化,能够在EC2实例上提供更高效的PyTorch模型推理性能。
容器镜像详情
本次发布的容器镜像基于Ubuntu 20.04操作系统,预装了Python 3.11环境和PyTorch 2.3.0框架的CPU版本。镜像标识为:
763104351884.dkr.ecr.us-west-2.amazonaws.com/pytorch-inference-graviton:2.3.0-cpu-py311-ubuntu20.04-ec2-v1.37
镜像的SHA256校验和为:
e4bb78927924ba4968fa873643761b0e296bfb85548182980ffefdd5ca1e3020
关键特性与组件
-
PyTorch生态系统:容器中预装了完整的PyTorch生态系统,包括:
- PyTorch 2.3.0 CPU版本
- TorchVision 0.18.0
- TorchAudio 2.3.0
- TorchServe 0.11.0模型服务框架
- Torch Model Archiver 0.11.0模型打包工具
-
科学计算支持:包含了常用的科学计算库:
- NumPy 1.26.4
- SciPy 1.14.0
- OpenCV 4.10.0.84
-
开发工具:为方便开发调试,容器中还预装了:
- Cython 3.0.10
- Ninja构建系统1.11.1.1
- Emacs编辑器
-
AWS集成:内置了AWS命令行工具和SDK:
- AWS CLI 1.33.19
- Boto3 1.34.137
- Botocore 1.34.137
性能优化与兼容性
这个版本的容器特别针对AWS Graviton处理器进行了优化。Graviton是AWS基于ARM架构自主研发的处理器,相比传统x86架构,在性价比方面有明显优势。通过使用这个容器,用户可以在Graviton实例上获得:
- 更低的推理成本
- 更高的能效比
- 针对ARM架构优化的PyTorch运算
容器中的PyTorch和相关库都针对ARM64架构进行了编译优化,确保了在Graviton实例上的最佳性能表现。
使用场景
这个PyTorch推理容器特别适合以下场景:
-
模型服务化部署:结合TorchServe可以快速将训练好的PyTorch模型部署为可扩展的推理服务。
-
批量推理任务:对于需要处理大量数据的离线推理任务,可以在Graviton实例上运行以获得更好的性价比。
-
边缘计算场景:由于ARM架构的能效优势,这个容器也适合部署在边缘计算场景中。
-
CI/CD流水线:可以作为持续集成和持续部署流程中的标准化测试环境。
版本管理与兼容性
容器提供了多个标签以满足不同用户的需求:
- 精确版本标签:
2.3.0-cpu-py311-ubuntu20.04-ec2-v1.37 - 主版本标签:
2.3-cpu-py311-ec2 - 通用标签:
2.3.0-cpu-py311-ubuntu20.04-ec2
这种灵活的标签策略既满足了需要固定特定版本的生产环境需求,也为开发测试提供了便利。
总结
AWS Deep Learning Containers的这个新版本为PyTorch用户提供了在Graviton处理器上运行模型推理的优化解决方案。通过预配置的环境和针对性的优化,开发者可以快速部署高效的推理服务,同时享受ARM架构带来的成本优势。对于已经在使用PyTorch的AWS用户,特别是关注推理成本和效率的团队,这个容器版本值得考虑采用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00