Qiskit SDK中ObservablesArray基于SparseObservable的重构分析
在量子计算编程框架Qiskit SDK的最新开发中,开发团队对ObservablesArray数据结构进行了重要重构,将其内部实现从简单的Pauli字符串映射改为基于SparseObservable类型。这一技术改进为量子测量和估计任务带来了更高的灵活性和性能优化空间。
重构背景与动机
ObservablesArray是Qiskit中用于表示可观测量的核心数据结构,传统上它存储的是Pauli字符串到系数的映射关系。随着量子算法复杂度的提升,这种简单的映射结构逐渐显现出局限性:
- 缺乏对投影算子等高级观测量的原生支持
- 运算效率有待提高
- 类型系统不够严谨
重构后的实现基于SparseObservable类型,这是一个更强大、更灵活的可观测量表示方式,能够更好地满足现代量子算法的需求。
关键技术改进
类型系统扩展
重构首先扩展了ObservableLike类型系统,使其包含SparseObservable类型。这一变化为整个代码库提供了更丰富的类型支持,同时保持了向后兼容性。
内部表示转换
ObservablesArray现在内部存储的是SparseObservable对象而非简单的映射。这一转换通过coerce_observable方法实现,该方法确保:
- 所有输入的可观测量都被转换为
SparseObservable类型 - 对每个可观测量调用
simplify方法进行简化 - 在需要时验证是否允许投影算子
接口兼容性维护
为了确保现有代码不受影响,重构保留了原有的接口行为:
__array__、__getitem__和tolist方法仍然返回映射形式- 支持的字母表扩展为
IXYZ01+-lr,覆盖更广泛的量子操作 __repr__保持原有输出格式不变
新增功能接口
重构引入了两个重要的新方法:
get_sparse_observable(index):获取指定索引处的SparseObservable对象sparse_observable_array:返回包含所有稀疏可观测量的数组
这些新方法为需要直接操作SparseObservable的高级用例提供了便利。
性能优化
新实现的apply_layout方法能够高效地对所有存储的可观测量应用布局变换。这一优化特别适用于大规模量子电路的处理场景,通过批量操作减少了重复开销。
未来发展方向
虽然当前重构已经完成核心功能,但仍有进一步优化空间:
- 后端估计器对投影算子的完整支持
- 状态向量估计器的相应更新
- 更高效的内存管理策略
这些改进将被安排在后续版本中逐步实现。
总结
Qiskit SDK中ObservablesArray基于SparseObservable的重构是一次重要的技术升级,它不仅增强了框架的功能性,还为未来量子算法的发展预留了空间。这一改进体现了Qiskit团队对代码质量和技术前瞻性的持续追求,将为量子计算开发者提供更强大、更灵活的工具支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00