Harvester项目中Longhorn存储类升级问题的分析与解决
问题背景
在Harvester v1.4版本中,当用户尝试修改harvester managedchart的spec.values.storageClass.defaultStorageClass配置时,系统在进行同版本升级过程中会出现"post-upgrade hooks (longhorn-post-upgrade) failed: context deadline exceeded"的错误提示。这个问题在v1.4.1版本中可以稳定复现,影响了用户对存储类的正常管理和升级操作。
问题现象
当用户执行以下操作时会出现问题:
- 编辑harvester managedchart,将spec.values.storageClass.defaultStorageClass设置为false
- 等待约2分钟后,再将其改回true
- 进行同版本升级操作
此时系统会报告升级失败,错误信息指向longhorn-post-upgrade钩子超时。在v1.4.1版本中,这个问题可以100%复现。
技术分析
这个问题本质上是一个升级过程中的资源协调问题。当用户修改存储类的默认设置时,系统需要重新配置Longhorn存储组件,但在升级过程中,这些配置变更没有正确同步,导致升级钩子无法在预定时间内完成操作。
具体来说,问题涉及以下几个技术点:
-
ManagedChart机制:Harvester使用ManagedChart来管理各种组件的部署配置,包括Longhorn存储系统。
-
存储类默认设置:当defaultStorageClass标志被修改时,系统需要更新Kubernetes中的StorageClass资源。
-
升级钩子:Longhorn在升级过程中使用post-upgrade钩子来执行必要的后置操作,这些操作需要在限定时间内完成。
解决方案
开发团队通过PR#7429修复了这个问题。修复的核心思路是优化了升级过程中资源配置的同步机制,确保:
- 存储类配置变更能够及时生效
- 升级钩子能够获得足够的执行时间
- 系统状态能够正确反映在ManagedChart的状态中
修复后的版本(v1.4-2c07c252-head)经过测试验证,确认问题已解决。测试结果表明:
- 用户可以自由修改defaultStorageClass设置而不会导致后续升级失败
- 同版本升级操作能够顺利完成
- ManagedChart状态能够正确反映系统实际状态
注意事项
虽然主要问题已解决,但在测试过程中发现了一个相关现象:系统会意外显示"Reached expected number of succeeded pods"消息。这个问题已被单独记录跟踪(issue#7605),不影响当前修复的主要功能。
总结
这个问题的修复提升了Harvester系统中存储管理的稳定性和可靠性,特别是在进行配置变更和系统升级时的健壮性。对于使用v1.4版本的用户,建议升级到包含此修复的版本以获得更好的使用体验。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









