UnbalancedDataset项目中BalancedBaggingClassifier的采样机制解析
2025-06-01 20:27:22作者:蔡怀权
背景介绍
在机器学习实践中,处理类别不平衡数据是一个常见挑战。UnbalancedDataset项目提供了多种解决方案,其中BalancedBaggingClassifier是一个重要的集成学习方法。本文将深入分析该分类器的采样机制和工作原理。
BalancedBaggingClassifier的核心机制
BalancedBaggingClassifier通过两种层次的采样来实现类别平衡:
- 初始采样层:首先对原始数据集进行自助采样(bootstrap sampling),这个阶段保留了原始数据的分布特性
- 平衡调整层:在分类器训练阶段,对采样后的数据进行二次调整,确保每个类别样本数量相等
实际案例分析
我们通过一个具体例子来说明这一机制。假设原始数据集包含:
- 多数类(1类):900个样本
- 少数类(0类):100个样本
经过初始自助采样后,各基分类器获得的样本分布可能如下:
- 1类样本:约660-680个
- 0类样本:约60-90个
虽然初始采样保留了原始分布,但在实际训练每个基分类器时,BalancedBaggingClassifier会自动进行平衡处理,最终每个基分类器接收到的训练数据中,两类样本数量完全相等。
技术实现细节
为了实现这一机制,BalancedBaggingClassifier内部进行了以下处理:
- 对每个基分类器独立进行自助采样
- 识别采样结果中少数类的样本数量
- 从多数类中随机抽取相同数量的样本
- 组合这两部分样本作为最终训练集
实际应用建议
- 样本量评估:使用前应先检查少数类样本量,确保足够支持模型训练
- 随机性控制:设置random_state参数以保证实验可重复性
- 自定义基分类器:可以继承基分类器并添加自定义属性来验证采样效果
- 性能监控:关注模型在验证集上的表现,特别是少数类的识别率
总结
UnbalancedDataset项目中的BalancedBaggingClassifier通过巧妙的双层采样机制,既保留了自助采样的优势,又解决了类别不平衡问题。理解这一机制有助于数据科学家在实际项目中更好地应用和调试模型,特别是在金融风控、医疗诊断等类别不平衡问题突出的领域。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
148
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19