Kubernetes Descheduler 1.30版本新增对Unknown状态Pod的支持
在Kubernetes集群运维过程中,Pod可能会因为各种原因进入Unknown状态。这种状态通常表示kubelet无法向API服务器报告Pod的状态,可能是由于节点失联、kubelet进程崩溃或网络分区等问题导致的。对于运维人员来说,及时清理这些处于Unknown状态的Pod对于维护集群健康非常重要。
在Kubernetes Descheduler 1.29及更早版本中,Pod生命周期插件虽然支持根据Pod状态进行筛选和驱逐,但并未包含Unknown状态。这导致管理员无法直接通过Descheduler策略来自动处理这些Pod,只能依赖手动干预或其他工具。
Kubernetes Descheduler 1.30版本对此进行了重要改进,在Pod生命周期插件中正式加入了对Unknown状态的支持。这意味着集群管理员现在可以配置Descheduler策略,自动识别并驱逐长时间处于Unknown状态的Pod,从而释放相关资源并保持集群整洁。
从技术实现角度来看,这个改进涉及对Pod生命周期插件验证逻辑的修改。在1.30版本中,Unknown被添加到了允许的状态列表中,使得Descheduler能够正确识别和处理这类Pod。这一变更虽然看似简单,但对于实际运维场景却有着重要意义。
对于需要处理Unknown状态Pod的集群管理员,现在可以配置类似以下的策略:
apiVersion: "descheduler/v1alpha1"
kind: "DeschedulerPolicy"
strategies:
"PodLifeTime":
enabled: true
params:
podLifeTime:
maxPodLifeTimeSeconds: 86400
states:
- "Unknown"
这个配置将使Descheduler自动驱逐处于Unknown状态超过24小时的Pod。管理员可以根据实际需求调整时间阈值和状态列表。
值得注意的是,Unknown状态的Pod驱逐需要谨慎处理,因为某些情况下这些Pod可能仍在运行工作负载。建议在实施前充分评估业务影响,并考虑设置适当的优雅终止期和备份机制。同时,对于关键业务Pod,建议结合Pod优先级和干扰预算等机制进行更精细的控制。
随着Kubernetes集群规模的扩大和复杂度的提高,自动化运维工具的重要性日益凸显。Kubernetes Descheduler 1.30版本对Unknown状态Pod的支持,进一步完善了其作为集群维护工具的能力,为管理员提供了更全面的资源管理手段。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00