Kubernetes Descheduler 1.30版本新增对Unknown状态Pod的支持
在Kubernetes集群运维过程中,Pod可能会因为各种原因进入Unknown状态。这种状态通常表示kubelet无法向API服务器报告Pod的状态,可能是由于节点失联、kubelet进程崩溃或网络分区等问题导致的。对于运维人员来说,及时清理这些处于Unknown状态的Pod对于维护集群健康非常重要。
在Kubernetes Descheduler 1.29及更早版本中,Pod生命周期插件虽然支持根据Pod状态进行筛选和驱逐,但并未包含Unknown状态。这导致管理员无法直接通过Descheduler策略来自动处理这些Pod,只能依赖手动干预或其他工具。
Kubernetes Descheduler 1.30版本对此进行了重要改进,在Pod生命周期插件中正式加入了对Unknown状态的支持。这意味着集群管理员现在可以配置Descheduler策略,自动识别并驱逐长时间处于Unknown状态的Pod,从而释放相关资源并保持集群整洁。
从技术实现角度来看,这个改进涉及对Pod生命周期插件验证逻辑的修改。在1.30版本中,Unknown被添加到了允许的状态列表中,使得Descheduler能够正确识别和处理这类Pod。这一变更虽然看似简单,但对于实际运维场景却有着重要意义。
对于需要处理Unknown状态Pod的集群管理员,现在可以配置类似以下的策略:
apiVersion: "descheduler/v1alpha1"
kind: "DeschedulerPolicy"
strategies:
"PodLifeTime":
enabled: true
params:
podLifeTime:
maxPodLifeTimeSeconds: 86400
states:
- "Unknown"
这个配置将使Descheduler自动驱逐处于Unknown状态超过24小时的Pod。管理员可以根据实际需求调整时间阈值和状态列表。
值得注意的是,Unknown状态的Pod驱逐需要谨慎处理,因为某些情况下这些Pod可能仍在运行工作负载。建议在实施前充分评估业务影响,并考虑设置适当的优雅终止期和备份机制。同时,对于关键业务Pod,建议结合Pod优先级和干扰预算等机制进行更精细的控制。
随着Kubernetes集群规模的扩大和复杂度的提高,自动化运维工具的重要性日益凸显。Kubernetes Descheduler 1.30版本对Unknown状态Pod的支持,进一步完善了其作为集群维护工具的能力,为管理员提供了更全面的资源管理手段。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00