在Netcup服务器上搭建MLflow实验跟踪平台指南
2025-07-08 05:31:12作者:柏廷章Berta
前言
在机器学习和数据科学项目中,实验跟踪是至关重要的环节。MLflow作为一个开源的机器学习生命周期管理平台,能够有效帮助团队记录实验参数、代码版本、评估指标和输出文件。本文将详细介绍如何在Netcup服务器上搭建一个带有基础认证功能的MLflow服务。
系统要求
- 操作系统:Ubuntu 22.04 LTS
- 服务器配置:建议至少VPS 200 G10s规格
- 用户权限:拥有sudo权限的用户
- 网络:开放HTTP/HTTPS端口
环境准备
1. 系统更新与基础软件安装
首先更新系统并安装必要的依赖包:
sudo apt-get update -y && sudo apt-get upgrade -y
sudo apt-get install -y python3 python3-pip python3.10-venv postgresql nginx gcc
这些软件包包括:
- Python 3及虚拟环境支持
- PostgreSQL数据库
- Nginx作为反向代理
- GCC编译器
2. 数据库配置
为MLflow创建专用数据库和用户:
sudo -u postgres psql
在PostgreSQL交互界面中执行:
CREATE DATABASE mlflow;
CREATE USER mlflow WITH ENCRYPTED PASSWORD 'your_secure_password';
GRANT ALL PRIVILEGES ON DATABASE mlflow TO mlflow;
请务必将your_secure_password
替换为强密码。
MLflow安装与配置
1. 创建虚拟环境
python3 -m venv mlflow_venv
source mlflow_venv/bin/activate
2. 安装MLflow及相关包
pip install mlflow psycopg2-binary
psycopg2-binary
是PostgreSQL的Python适配器。
3. 创建数据目录
mkdir -p ~/mlflow/mlruns # 模型存储目录
mkdir -p ~/mlflow/mllogs # 日志目录
服务部署
1. 测试运行
首次运行MLflow服务进行测试:
mlflow server \
--backend-store-uri postgresql://mlflow:your_secure_password@localhost/mlflow \
--artifacts-destination ~/mlflow/mlruns \
--serve-artifacts \
-h 0.0.0.0 \
-p 8000
访问服务器IP:8000应能看到MLflow界面。
2. 配置系统服务
创建/etc/systemd/system/mlflow.service
文件:
[Unit]
Description=MLflow Server
After=network.target
[Service]
Restart=on-failure
RestartSec=30
StandardOutput=file:/home/user/mlflow/mllogs/stdout.log
StandardError=file:/home/user/mlflow/mllogs/stderr.log
User=root
ExecStart=/bin/bash -c 'PATH=/home/user/mlflow_venv/bin:$PATH exec mlflow server --backend-store-uri postgresql://mlflow:your_secure_password@localhost/mlflow --artifacts-destination ~/mlflow/mlruns --serve-artifacts -h 127.0.0.1 -p 8000'
[Install]
WantedBy=multi-user.target
启用并启动服务:
sudo systemctl daemon-reload
sudo systemctl enable mlflow
sudo systemctl start mlflow
Nginx反向代理与认证
1. 安装认证工具
sudo apt-get install -y apache2-utils
2. 创建认证用户
sudo htpasswd -c /etc/apache2/.htpasswd your_username
3. 配置Nginx
修改/etc/nginx/sites-enabled/default
:
location / {
proxy_pass http://localhost:8000;
auth_basic "MLflow Access";
auth_basic_user_file /etc/apache2/.htpasswd;
}
重启Nginx:
sudo systemctl restart nginx
使用MLflow跟踪实验
1. 本地环境准备
python3 -m venv mlflow_client
source mlflow_client/bin/activate
pip install mlflow scikit-learn
2. 示例实验代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import mlflow
# 设置MLflow跟踪URI
mlflow.set_tracking_uri('http://username:password@your_server_ip')
# 加载数据
data = load_iris()
X, y = data['data'], data['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建/获取实验
exp_name = '随机森林树数量实验'
experiment = mlflow.get_experiment_by_name(exp_name)
if experiment is None:
experiment_id = mlflow.create_experiment(exp_name)
else:
experiment_id = experiment.experiment_id
# 运行实验
for n_est in range(1, 21):
with mlflow.start_run(experiment_id=experiment_id):
# 训练模型
rf = RandomForestClassifier(n_estimators=n_est)
rf.fit(X_train, y_train)
# 评估模型
accuracy = rf.score(X_test, y_test)
# 记录参数和指标
mlflow.log_param('n_estimators', n_est)
mlflow.log_metric('accuracy', accuracy)
# 保存模型
mlflow.sklearn.log_model(rf, "random_forest_model")
安全建议
- 启用HTTPS:使用Let's Encrypt获取免费SSL证书
- IP限制:配置防火墙只允许特定IP访问
- 定期备份:设置PostgreSQL数据库的定期备份
- 监控:设置服务监控确保MLflow持续运行
总结
通过本教程,您已经成功搭建了一个具有基础认证功能的MLflow实验跟踪平台。这个平台可以帮助您和团队:
- 系统记录机器学习实验参数和结果
- 比较不同模型的表现
- 保存和共享训练好的模型
- 提高实验的复现性
MLflow还提供更多高级功能如模型注册、部署等,您可以在官方文档中探索这些功能来进一步完善您的机器学习工作流。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0288Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp英语课程填空题提示缺失问题分析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp课程中屏幕放大器知识点优化分析4 freeCodeCamp论坛排行榜项目中的错误日志规范要求5 freeCodeCamp音乐播放器项目中的函数调用问题解析6 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析7 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析8 freeCodeCamp课程视频测验中的Tab键导航问题解析9 freeCodeCamp博客页面工作坊中的断言方法优化建议10 freeCodeCamp课程页面空白问题的技术分析与解决方案
最新内容推荐
QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
166
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
89
580

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

一个高性能、可扩展、轻量、省心的仓颉应用开发框架。IoC,Rest,宏路由,Json,中间件,参数绑定与校验,文件上传下载,OAuth2,MCP......
Cangjie
94
15

React Native鸿蒙化仓库
C++
199
279

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
954
564