在Netcup服务器上搭建MLflow实验跟踪平台指南
2025-07-08 19:54:17作者:柏廷章Berta
前言
在机器学习和数据科学项目中,实验跟踪是至关重要的环节。MLflow作为一个开源的机器学习生命周期管理平台,能够有效帮助团队记录实验参数、代码版本、评估指标和输出文件。本文将详细介绍如何在Netcup服务器上搭建一个带有基础认证功能的MLflow服务。
系统要求
- 操作系统:Ubuntu 22.04 LTS
- 服务器配置:建议至少VPS 200 G10s规格
- 用户权限:拥有sudo权限的用户
- 网络:开放HTTP/HTTPS端口
环境准备
1. 系统更新与基础软件安装
首先更新系统并安装必要的依赖包:
sudo apt-get update -y && sudo apt-get upgrade -y
sudo apt-get install -y python3 python3-pip python3.10-venv postgresql nginx gcc
这些软件包包括:
- Python 3及虚拟环境支持
- PostgreSQL数据库
- Nginx作为反向代理
- GCC编译器
2. 数据库配置
为MLflow创建专用数据库和用户:
sudo -u postgres psql
在PostgreSQL交互界面中执行:
CREATE DATABASE mlflow;
CREATE USER mlflow WITH ENCRYPTED PASSWORD 'your_secure_password';
GRANT ALL PRIVILEGES ON DATABASE mlflow TO mlflow;
请务必将your_secure_password替换为强密码。
MLflow安装与配置
1. 创建虚拟环境
python3 -m venv mlflow_venv
source mlflow_venv/bin/activate
2. 安装MLflow及相关包
pip install mlflow psycopg2-binary
psycopg2-binary是PostgreSQL的Python适配器。
3. 创建数据目录
mkdir -p ~/mlflow/mlruns # 模型存储目录
mkdir -p ~/mlflow/mllogs # 日志目录
服务部署
1. 测试运行
首次运行MLflow服务进行测试:
mlflow server \
--backend-store-uri postgresql://mlflow:your_secure_password@localhost/mlflow \
--artifacts-destination ~/mlflow/mlruns \
--serve-artifacts \
-h 0.0.0.0 \
-p 8000
访问服务器IP:8000应能看到MLflow界面。
2. 配置系统服务
创建/etc/systemd/system/mlflow.service文件:
[Unit]
Description=MLflow Server
After=network.target
[Service]
Restart=on-failure
RestartSec=30
StandardOutput=file:/home/user/mlflow/mllogs/stdout.log
StandardError=file:/home/user/mlflow/mllogs/stderr.log
User=root
ExecStart=/bin/bash -c 'PATH=/home/user/mlflow_venv/bin:$PATH exec mlflow server --backend-store-uri postgresql://mlflow:your_secure_password@localhost/mlflow --artifacts-destination ~/mlflow/mlruns --serve-artifacts -h 127.0.0.1 -p 8000'
[Install]
WantedBy=multi-user.target
启用并启动服务:
sudo systemctl daemon-reload
sudo systemctl enable mlflow
sudo systemctl start mlflow
Nginx反向代理与认证
1. 安装认证工具
sudo apt-get install -y apache2-utils
2. 创建认证用户
sudo htpasswd -c /etc/apache2/.htpasswd your_username
3. 配置Nginx
修改/etc/nginx/sites-enabled/default:
location / {
proxy_pass http://localhost:8000;
auth_basic "MLflow Access";
auth_basic_user_file /etc/apache2/.htpasswd;
}
重启Nginx:
sudo systemctl restart nginx
使用MLflow跟踪实验
1. 本地环境准备
python3 -m venv mlflow_client
source mlflow_client/bin/activate
pip install mlflow scikit-learn
2. 示例实验代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import mlflow
# 设置MLflow跟踪URI
mlflow.set_tracking_uri('http://username:password@your_server_ip')
# 加载数据
data = load_iris()
X, y = data['data'], data['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建/获取实验
exp_name = '随机森林树数量实验'
experiment = mlflow.get_experiment_by_name(exp_name)
if experiment is None:
experiment_id = mlflow.create_experiment(exp_name)
else:
experiment_id = experiment.experiment_id
# 运行实验
for n_est in range(1, 21):
with mlflow.start_run(experiment_id=experiment_id):
# 训练模型
rf = RandomForestClassifier(n_estimators=n_est)
rf.fit(X_train, y_train)
# 评估模型
accuracy = rf.score(X_test, y_test)
# 记录参数和指标
mlflow.log_param('n_estimators', n_est)
mlflow.log_metric('accuracy', accuracy)
# 保存模型
mlflow.sklearn.log_model(rf, "random_forest_model")
安全建议
- 启用HTTPS:使用Let's Encrypt获取免费SSL证书
- IP限制:配置防火墙只允许特定IP访问
- 定期备份:设置PostgreSQL数据库的定期备份
- 监控:设置服务监控确保MLflow持续运行
总结
通过本教程,您已经成功搭建了一个具有基础认证功能的MLflow实验跟踪平台。这个平台可以帮助您和团队:
- 系统记录机器学习实验参数和结果
- 比较不同模型的表现
- 保存和共享训练好的模型
- 提高实验的复现性
MLflow还提供更多高级功能如模型注册、部署等,您可以在官方文档中探索这些功能来进一步完善您的机器学习工作流。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C073
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
460
3.43 K
暂无简介
Dart
713
170
Ascend Extension for PyTorch
Python
267
304
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
186
71
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
842
417
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
446
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119