Linkerd2 edge-25.4.3版本发布:优化CLI与追踪功能
Linkerd是一个轻量级的服务网格解决方案,专为Kubernetes环境设计。它通过透明的代理机制为微服务提供可靠的通信、安全性和可观测性,而无需修改应用代码。作为云原生计算基金会(CNCF)毕业项目,Linkerd以其简单性和高性能著称。
本次发布的edge-25.4.3版本主要针对CLI工具和追踪功能进行了优化改进,属于推荐升级版本。下面我们将详细解析这次更新的技术细节。
CLI工具的Gateway API检查增强
在Kubernetes生态中,Gateway API是一组用于配置网络基础设施的扩展API资源。Linkerd利用这些API来实现高级流量管理功能。本次更新中,CLI工具对Gateway API的检查机制进行了两项重要改进:
-
版本兼容性检查:现在CLI会明确验证集群中安装的Gateway API是否包含v1版本的资源。这一改进避免了因API版本不匹配导致的潜在问题,确保Linkerd能够正确使用Gateway API的最新稳定功能。
-
更明确的安装指引:当检测到缺少必要的Gateway API资源时,CLI会提供更具体的安装命令。这显著降低了用户配置门槛,特别是对于初次使用Linkerd的开发人员来说,能够快速准确地完成前置依赖的安装。
这些改进使得Linkerd的安装和配置过程更加健壮和用户友好,减少了因环境配置不当导致的部署问题。
追踪功能默认端口变更
分布式追踪是现代微服务架构中重要的可观测性工具,它帮助开发者理解请求在服务间的流转路径和性能特征。本次版本对追踪功能的默认配置进行了重要调整:
将默认的追踪接收端口从OpenCensus标准的55678变更为OpenTelemetry标准的4317。这一变更反映了行业技术趋势的演进:
-
OpenTelemetry成为新标准:作为CNCF项目,OpenTelemetry正在成为云原生可观测性的事实标准,整合了原先分散的追踪、指标和日志收集方案。
-
更好的兼容性:4317端口是OpenTelemetry协议默认的gRPC接收端口,使用这一端口可以更好地与主流可观测性后端(如Jaeger、Zipkin等)集成。
-
简化配置:对于采用OpenTelemetry生态的用户,现在可以更简单地配置Linkerd的追踪功能,减少额外的端口映射配置。
需要注意的是,这一变更可能会影响现有部署。如果用户环境中仍在使用OpenCensus协议的收集器,需要在配置中明确指定55678端口以保持兼容。
其他改进与依赖更新
除了上述主要变更外,本次发布还包含多项依赖更新和内部改进:
- Helm客户端版本升级至3.17.3,带来更稳定的chart管理体验
- Rustls加密库更新至0.23.26版本,增强安全性
- Prometheus客户端库升级,改进指标收集性能
- 多项测试稳定性改进,特别是在多集群场景下的验证逻辑
这些底层更新虽然对终端用户透明,但为Linkerd的稳定运行提供了更好的基础。
升级建议
对于正在使用Linkerd edge版本的用户,建议按以下步骤进行升级:
- 备份现有配置,特别是自定义的追踪相关设置
- 更新CLI工具至25.4.3版本
- 使用新版CLI执行升级操作
- 如果使用追踪功能,验证收集器配置是否适配新的默认端口
对于生产环境用户,建议在测试环境中验证新版特性后再进行推广部署。虽然edge版本经过充分测试,但作为非长期支持版本,可能仍包含实验性功能。
Linkerd团队持续通过这种频繁的edge版本发布来收集用户反馈,不断优化产品功能和稳定性。本次发布的改进特别关注了用户体验和行业标准适配,体现了项目对开发者友好性和技术前瞻性的重视。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00