QMOF数据库:金属-有机框架量子化学性质的终极指南
QMOF(Quantum MOF)数据库是一个革命性的开源项目,专门提供超过20,000个金属-有机框架(MOFs)和配位聚合物的量子化学性质数据。这些数据通过高吞吐量周期性密度泛函理论(DFT)计算获得,为材料科学家和研究者提供了前所未有的数据资源,加速新材料发现和创新。
项目概览
QMOF数据库汇集了来自实验和假设性MOF数据库的丰富数据源,包括剑桥结构数据库(CSD)、CoRE MOF数据库以及多种理论构建的MOF结构。每个MOF都经过DFT优化,确保数据的准确性和可靠性。
核心技术原理
QMOF数据库的核心基于密度泛函理论(DFT),这是一种基于电子密度的量子力学方法。通过DFT计算,QMOF能够提供MOFs的几何结构、能量、部分原子电荷、键阶、原子自旋密度、磁矩、带隙、电荷密度和态密度等关键性质。
项目采用高吞吐量计算方法,对大量MOFs进行系统化优化和计算。这种批量化处理不仅提高了数据生产效率,还保证了计算结果的一致性和可比性。数据库中的每个结构都经过严格的质量控制流程,确保数据的科学价值。
实际应用价值
QMOF数据库在实际科研和工业应用中展现出巨大价值:
材料筛选与设计:研究者可以利用数据库中的量子化学性质,快速筛选出具有特定功能的MOFs,为新材料设计提供精准指导。
性能预测:通过分析数据库中的电子结构数据,可以预测MOFs在吸附分离、催化反应、气体存储等领域的性能表现。
机器学习训练:QMOF提供了丰富的数据集,支持多种机器学习算法的训练和应用。
独特优势亮点
QMOF数据库具有多项显著优势:
数据规模庞大:包含20,000+ MOFs的详细量子化学性质,是目前同类数据库中规模最大的之一。
数据质量保证:所有数据均经过DFT优化计算,确保了数据的科学性和可靠性。
开放许可政策:数据遵循CC BY 4.0许可,允许用户自由使用、分享和改编,只需提供适当的归属和指示修改。
持续更新维护:项目团队定期更新数据库,不断添加新的MOFs和性质数据。
未来展望
QMOF数据库的发展前景广阔。随着计算能力的提升和算法的优化,数据库将持续扩展,涵盖更多类型的MOFs和更丰富的性质数据。
项目将进一步加强与机器学习技术的结合,开发更智能的材料发现工具。同时,数据库的应用范围也将从传统的吸附分离扩展到催化、传感、能源存储等新兴领域。
QMOF数据库的开源特性将促进全球科研社区的合作与创新,为材料科学的发展注入新的活力。通过持续的技术创新和数据积累,QMOF有望成为材料发现领域的重要基础设施。
结语
QMOF数据库代表了材料科学数据共享的新范式。它不仅为研究者提供了宝贵的数据资源,还推动了材料发现方法的革新。无论您是材料科学家、化学工程师还是机器学习研究者,QMOF数据库都将是您科研工作的得力助手。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00

