DrissionPage实战:高效爬取软科大学排名数据
2025-05-25 15:20:39作者:曹令琨Iris
前言
在数据采集领域,选择合适的工具往往能事半功倍。本文将介绍如何使用DrissionPage这一现代化网页自动化工具,高效爬取软科中国大学排名数据。通过实际案例,我们将展示DrissionPage的强大功能和灵活用法。
项目背景
软科中国大学排名是教育领域的重要参考指标,其数据采集工作对教育研究具有重要意义。传统爬取方式往往面临页面动态加载、反爬机制等技术挑战。而DrissionPage结合了浏览器自动化和静态解析的优势,能够优雅地解决这些问题。
技术方案解析
1. 初始化设置
首先需要创建ChromiumPage对象并进行基本配置:
from DrissionPage import ChromiumPage
from DataRecorder import Recorder
p = ChromiumPage()
p.get('https://www.shanghairanking.cn/rankings/bcur/202310')
p.set.NoneElement_value('无')
这里使用了NoneElement_value设置,当元素不存在时返回"无"而非抛出异常,增强了代码的健壮性。
2. 数据存储准备
使用DataRecorder库简化数据存储过程:
r = Recorder('data.xlsx')
r.set.head(('排名', '名称', '头衔', '位置', '类型', '总分'))
3. 核心数据提取逻辑
通过分析页面结构,我们发现所有数据实际上已在首次加载时获取,翻页只是前端展示逻辑:
while True:
for tr in p.s_ele('t:tbody').children():
data = (tr('.^ranking').text, tr('.name-cn').text, tr('.tags').text,
tr.ele('t:td', index=-3).text, tr('t:td', index=-2).text,
tr('t:td', index=-1).text)
r.add_data(data)
关键点解析:
- 使用
s_ele方法获取静态元素,提高解析效率 - 通过CSS选择器
.^ranking定位排名元素 - 使用
index=-3等负索引从后往前定位元素,避免因列顺序变化导致的错误
4. 翻页控制
通过检查下一页按钮的状态判断是否继续:
btn = p('@title=下一页')
if btn.attr('class').startswith('ant-pagination-disabled'):
break
btn.click()
5. 数据保存
最后将采集的数据写入文件:
r.record()
技术亮点
-
混合模式优势:DrissionPage允许在同一个会话中无缝切换静态解析和动态交互模式。
-
健壮的选择器:
- 使用属性选择器
@title=下一页定位翻页按钮 - 负索引定位确保列顺序变化不影响数据提取
- 使用属性选择器
-
性能优化:
- 识别到数据已全部加载,避免不必要的翻页等待
- 静态解析大幅提高数据提取速度
-
容错处理:
- 设置NoneElement_value处理缺失元素
- 明确的分页终止条件
常见问题解决方案
-
元素定位失败:
- 优先使用静态解析(
s_ele) - 添加适当的等待时间
- 使用更稳定的选择器策略
- 优先使用静态解析(
-
数据完整性:
- 验证每页数据量是否符合预期
- 添加异常捕获和重试机制
-
反爬应对:
- 合理设置请求间隔
- 使用真实浏览器特征
总结
通过这个案例,我们展示了DrissionPage在复杂动态网页数据采集中的强大能力。相比传统方法,它具有以下优势:
- 代码简洁直观,开发效率高
- 执行速度快,资源占用低
- 兼容性强,能处理各种现代网页技术
- 学习曲线平缓,文档完善
对于教育数据采集、市场调研等需要处理动态内容的场景,DrissionPage是一个非常值得考虑的工具选择。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248