xUnit.net v3 新增 CTRF 测试报告格式支持
xUnit.net 作为 .NET 生态中广受欢迎的单元测试框架,在其最新的 v3 版本中新增了对 CTRF(Common Test Results Format)报告格式的支持。这一功能为开发者提供了更加标准化和跨平台的测试结果输出方式。
CTRF 格式简介
CTRF 是一种通用的测试结果格式标准,旨在为不同测试框架提供统一的报告格式。相比传统的 XML 或 TRX 格式,CTRF 具有更好的跨平台兼容性和更简洁的结构设计。
实现细节
xUnit.net v3 通过其内置的 JSON 序列化器实现了 CTRF 格式的输出功能。在实现过程中,开发团队做了以下关键设计决策:
-
环境信息增强:在报告的
environment部分额外添加了运行测试的计算机名称、用户名等信息,并将每个测试程序集及其包含的测试集合作为"套件"列出。 -
测试元数据扩展:在测试项的
extra部分包含了测试 ID、所属测试集合 ID、CLR 类型和方法名称等详细信息。 -
特殊标签处理:特别处理了名为
Category的特性(Trait),将其放入标准的tags元素中,实现了与 NUnit 和 MSTest 中[Category]特性的兼容。
性能考量
从文件大小角度来看,各种报告格式的表现如下:
- XML v2 报告始终是最紧凑的格式
- HTML 和 CTRF 格式大小相近,通常比 XML v2 大 0-50%
- TRX 格式通常比 XML v2 大 200% 以上
这使得 CTRF 成为测试框架间交换数据时既标准又高效的格式选择。
使用方式
根据不同的测试运行方式,开发者可以通过以下方法生成 CTRF 报告:
- 原生命令行运行:使用
-ctrf <filename>参数 - MSBuild 运行器:通过
<xunit>任务的Ctrf属性指定 - Microsoft.Testing.Platform:使用
--report-ctrf参数(可配合--report-ctrf-filename指定文件名)
值得注意的是,原生运行器会生成包含所有测试程序集结果的单一 CTRF 报告,而 Microsoft.Testing.Platform 会为每个测试程序集生成单独的 CTRF 报告。
实际应用建议
对于在 CI/CD 流水线中使用 CTRF 报告的开发者,需要注意:
-
当通过
dotnet test命令运行时,需要使用--分隔符来传递参数,例如:dotnet test -- --report-ctrf -
目前生成的 CTRF 文件采用 UTF-8 with BOM 编码,某些 Node.js 解析器可能需要额外处理才能正确读取
-
该功能目前仅在 xUnit.net v3 中提供,不计划向后移植到 v2 版本
这一功能的加入使得 xUnit.net 能够更好地融入现代测试生态系统,为开发者提供了更多元化的测试结果处理选择。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00