3DGenomes/TADbit入门教程:Hi-C数据分析与TAD识别指南
什么是3DGenomes/TADbit
3DGenomes/TADbit是一个用于分析染色体三维结构和识别拓扑关联域(TAD)的Python工具包。它专门设计用于处理Hi-C数据,能够从原始交互矩阵中识别染色体上的功能区域边界,帮助研究人员理解基因组的三维组织结构。
Hi-C数据格式基础
Hi-C数据通常以对称矩阵的形式存储,矩阵中的每个值代表两个基因组区域之间的交互频率。典型的Hi-C数据格式如下:
chrT_001 chrT_002 chrT_003 chrT_004 chrT_005 chrT_006
chrT_001 629 164 88 105 10 35
chrT_002 86 612 175 110 40 29
chrT_003 159 216 437 105 43 73
数据加载方法
在TADbit中,我们可以通过以下方式加载Hi-C数据:
from pytadbit import Chromosome
# 创建染色体对象
my_chrom = Chromosome(name='chr19', centromere_search=True,
species='Homo sapiens', assembly='NCBI36')
# 加载Hi-C实验数据
my_chrom.add_experiment('k562', cell_type='wild type', exp_type='Hi-C',
hic_data="sample_data/HIC_k562_chr19_100000_obs.txt",
resolution=100000)
注意事项:
- TADbit默认假设Hi-C矩阵从染色体位置1开始
- 如果矩阵不包含完整的染色体长度,缺失的行列应填充为零
- 支持直接读取gzip压缩文件
实验对象操作
实验对象基础
加载的实验数据存储在特殊的实验列表中,可以通过名称或索引访问:
# 访问实验对象
exp1 = my_chrom.experiments[0]
exp2 = my_chrom.experiments["k562"]
实验数据合并
两个Hi-C实验可以相加合并,但建议先进行归一化处理:
# 合并两个实验
combined_exp = my_chrom.experiments["k562"] + my_chrom.experiments["gm06690"]
my_chrom.add_experiment(combined_exp)
注意:合并前应先进行归一化,以避免偏向交互计数更多的实验。
Hi-C数据可视化
TADbit提供了直观的可视化功能,可以快速查看交互矩阵:
# 单个实验可视化
exp1.view()
# 多实验对比可视化
my_chrom.visualize([('k562', 'gm06690'), 'k562+gm06690'])
可视化支持对数转换后的交互计数显示,便于观察不同区域间的相互作用强度。
TAD识别与分析
基本TAD识别
使用TADbit的核心功能识别拓扑关联域:
# 识别TAD
my_chrom.find_tad('k562', n_cpus=8)
my_chrom.find_tad('gm06690', n_cpus=8)
识别结果存储在实验对象的tads属性中,包含每个TAD的起始、结束位置和置信度评分。
TAD结果输出
TAD边界信息可以输出到文件或直接查看:
# 输出TAD边界
exp1.write_tad_borders()
TAD可视化
TAD边界可以在交互矩阵上直观显示:
# 在矩阵上显示TAD边界
my_chrom.visualize(exp1.name, paint_tads=True)
线宽与TAD边界的置信度评分成正比,便于评估边界可靠性。
密度图分析
TADbit还提供密度图来总结TAD特征:
# 生成TAD密度图
my_chrom.tad_density_plot('k562')
图中灰色弧代表TAD,高度反映相对交互量;彩色三角形标记边界,颜色从蓝到红表示置信度。
高级功能
多实验联合分析
TADbit支持基于多个Hi-C实验联合识别TAD:
# 批量模式识别TAD
my_chrom.find_tad(['k562', 'gm06690'], batch_mode=True, n_cpus=8)
限制区域处理
可以设置TAD的最大尺寸限制和中心粒区域处理:
# 设置TAD最大尺寸
my_chrom.set_max_tad_size(3000000)
# 自动识别中心粒区域(创建染色体对象时设置)
my_chrom = Chromosome(..., centromere_search=True)
数据保存与加载
分析结果可以保存以便后续使用:
# 保存染色体对象
my_chrom.save_chromosome("analysis_results.tdb")
# 加载保存的分析
from pytadbit import load_chromosome
loaded_chrom = load_chromosome("analysis_results.tdb")
注意:为节省空间,保存时不包括原始Hi-C数据,需要时重新加载。
总结
3DGenomes/TADbit提供了一套完整的工具链,从Hi-C数据加载、预处理到TAD识别和可视化分析。通过本教程,用户可以掌握基本操作流程,为进一步的3D基因组学研究奠定基础。特别值得注意的是其多实验联合分析能力和灵活的可视化功能,为比较不同条件下的染色体结构变化提供了强大支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00