3DGenomes/TADbit入门教程:Hi-C数据分析与TAD识别指南
什么是3DGenomes/TADbit
3DGenomes/TADbit是一个用于分析染色体三维结构和识别拓扑关联域(TAD)的Python工具包。它专门设计用于处理Hi-C数据,能够从原始交互矩阵中识别染色体上的功能区域边界,帮助研究人员理解基因组的三维组织结构。
Hi-C数据格式基础
Hi-C数据通常以对称矩阵的形式存储,矩阵中的每个值代表两个基因组区域之间的交互频率。典型的Hi-C数据格式如下:
chrT_001 chrT_002 chrT_003 chrT_004 chrT_005 chrT_006
chrT_001 629 164 88 105 10 35
chrT_002 86 612 175 110 40 29
chrT_003 159 216 437 105 43 73
数据加载方法
在TADbit中,我们可以通过以下方式加载Hi-C数据:
from pytadbit import Chromosome
# 创建染色体对象
my_chrom = Chromosome(name='chr19', centromere_search=True,
species='Homo sapiens', assembly='NCBI36')
# 加载Hi-C实验数据
my_chrom.add_experiment('k562', cell_type='wild type', exp_type='Hi-C',
hic_data="sample_data/HIC_k562_chr19_100000_obs.txt",
resolution=100000)
注意事项:
- TADbit默认假设Hi-C矩阵从染色体位置1开始
- 如果矩阵不包含完整的染色体长度,缺失的行列应填充为零
- 支持直接读取gzip压缩文件
实验对象操作
实验对象基础
加载的实验数据存储在特殊的实验列表中,可以通过名称或索引访问:
# 访问实验对象
exp1 = my_chrom.experiments[0]
exp2 = my_chrom.experiments["k562"]
实验数据合并
两个Hi-C实验可以相加合并,但建议先进行归一化处理:
# 合并两个实验
combined_exp = my_chrom.experiments["k562"] + my_chrom.experiments["gm06690"]
my_chrom.add_experiment(combined_exp)
注意:合并前应先进行归一化,以避免偏向交互计数更多的实验。
Hi-C数据可视化
TADbit提供了直观的可视化功能,可以快速查看交互矩阵:
# 单个实验可视化
exp1.view()
# 多实验对比可视化
my_chrom.visualize([('k562', 'gm06690'), 'k562+gm06690'])
可视化支持对数转换后的交互计数显示,便于观察不同区域间的相互作用强度。
TAD识别与分析
基本TAD识别
使用TADbit的核心功能识别拓扑关联域:
# 识别TAD
my_chrom.find_tad('k562', n_cpus=8)
my_chrom.find_tad('gm06690', n_cpus=8)
识别结果存储在实验对象的tads属性中,包含每个TAD的起始、结束位置和置信度评分。
TAD结果输出
TAD边界信息可以输出到文件或直接查看:
# 输出TAD边界
exp1.write_tad_borders()
TAD可视化
TAD边界可以在交互矩阵上直观显示:
# 在矩阵上显示TAD边界
my_chrom.visualize(exp1.name, paint_tads=True)
线宽与TAD边界的置信度评分成正比,便于评估边界可靠性。
密度图分析
TADbit还提供密度图来总结TAD特征:
# 生成TAD密度图
my_chrom.tad_density_plot('k562')
图中灰色弧代表TAD,高度反映相对交互量;彩色三角形标记边界,颜色从蓝到红表示置信度。
高级功能
多实验联合分析
TADbit支持基于多个Hi-C实验联合识别TAD:
# 批量模式识别TAD
my_chrom.find_tad(['k562', 'gm06690'], batch_mode=True, n_cpus=8)
限制区域处理
可以设置TAD的最大尺寸限制和中心粒区域处理:
# 设置TAD最大尺寸
my_chrom.set_max_tad_size(3000000)
# 自动识别中心粒区域(创建染色体对象时设置)
my_chrom = Chromosome(..., centromere_search=True)
数据保存与加载
分析结果可以保存以便后续使用:
# 保存染色体对象
my_chrom.save_chromosome("analysis_results.tdb")
# 加载保存的分析
from pytadbit import load_chromosome
loaded_chrom = load_chromosome("analysis_results.tdb")
注意:为节省空间,保存时不包括原始Hi-C数据,需要时重新加载。
总结
3DGenomes/TADbit提供了一套完整的工具链,从Hi-C数据加载、预处理到TAD识别和可视化分析。通过本教程,用户可以掌握基本操作流程,为进一步的3D基因组学研究奠定基础。特别值得注意的是其多实验联合分析能力和灵活的可视化功能,为比较不同条件下的染色体结构变化提供了强大支持。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00