LLM项目发布0.23a0版本:引入JSON Schema支持提升模型输出结构化能力
LLM是一个功能强大的命令行工具和Python库,主要用于与大型语言模型进行交互。该项目提供了简洁的接口,让开发者能够轻松地在命令行或Python代码中调用各种语言模型,处理自然语言任务。最新发布的0.23a0版本带来了重要的功能升级——JSON Schema支持,这将显著提升模型输出的结构化程度和可控性。
JSON Schema支持的核心价值
在语言模型应用中,一个常见挑战是如何确保模型输出符合预期的格式和结构。0.23a0版本通过引入JSON Schema支持,解决了这一痛点。JSON Schema是一种描述JSON数据结构的标准方式,开发者现在可以利用它来约束语言模型的输出格式,确保返回的数据符合预定义的模式。
这一功能对于构建可靠的生产系统尤为重要。当我们需要将语言模型集成到现有系统中时,结构化输出能够大大简化后续的数据处理流程,减少因格式不一致导致的错误。
主要功能特性
命令行接口增强
新版本为llm prompt命令增加了--schema选项,开发者可以直接在命令行中指定JSON Schema。例如,可以要求模型返回一个包含特定字段的对象,或者确保数组元素的类型一致。这种约束不仅提高了输出的可靠性,还能减少后续处理中的类型检查和转换工作。
Python API扩展
对于Python开发者,新版本在model.prompt()方法中增加了schema参数。这个参数既接受原生的JSON Schema字典,也支持Pydantic的BaseModel子类。这意味着开发者可以使用熟悉的Pydantic模型来定义输出结构,进一步简化开发流程。
插件系统升级
默认的OpenAI插件现已全面支持Schema功能,覆盖所有模型。同时,项目文档详细说明了如何为自定义模型插件添加Schema支持,为生态扩展提供了明确指导。
技术实现考量
值得注意的是,这个版本将Pydantic的依赖升级到了v2或更高版本,不再支持Pydantic v1。这一变化带来了性能提升和更丰富的功能集,但也要求开发者注意兼容性问题。Pydantic v2在数据验证和序列化方面有显著改进,能够更好地支持复杂的Schema验证场景。
应用场景示例
假设我们需要开发一个天气查询助手,希望模型返回结构化的天气信息。使用新功能,我们可以这样定义Schema:
from pydantic import BaseModel
class WeatherResponse(BaseModel):
location: str
temperature: float
unit: str
conditions: str
forecast: list[dict]
然后通过简单的API调用就能获得符合这一结构的输出,大大简化了后续处理逻辑。
总结
LLM 0.23a0版本的Schema支持功能为语言模型应用开发带来了重要进步。通过结构化输出约束,开发者能够构建更可靠、更易维护的系统。这一特性特别适合需要将语言模型集成到现有数据流水线中的场景,如数据分析、自动化工作流等。随着Pydantic v2的全面采用,项目在数据验证和处理能力上也迈上了一个新台阶。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00