LLM项目发布0.23a0版本:引入JSON Schema支持提升模型输出结构化能力
LLM是一个功能强大的命令行工具和Python库,主要用于与大型语言模型进行交互。该项目提供了简洁的接口,让开发者能够轻松地在命令行或Python代码中调用各种语言模型,处理自然语言任务。最新发布的0.23a0版本带来了重要的功能升级——JSON Schema支持,这将显著提升模型输出的结构化程度和可控性。
JSON Schema支持的核心价值
在语言模型应用中,一个常见挑战是如何确保模型输出符合预期的格式和结构。0.23a0版本通过引入JSON Schema支持,解决了这一痛点。JSON Schema是一种描述JSON数据结构的标准方式,开发者现在可以利用它来约束语言模型的输出格式,确保返回的数据符合预定义的模式。
这一功能对于构建可靠的生产系统尤为重要。当我们需要将语言模型集成到现有系统中时,结构化输出能够大大简化后续的数据处理流程,减少因格式不一致导致的错误。
主要功能特性
命令行接口增强
新版本为llm prompt命令增加了--schema选项,开发者可以直接在命令行中指定JSON Schema。例如,可以要求模型返回一个包含特定字段的对象,或者确保数组元素的类型一致。这种约束不仅提高了输出的可靠性,还能减少后续处理中的类型检查和转换工作。
Python API扩展
对于Python开发者,新版本在model.prompt()方法中增加了schema参数。这个参数既接受原生的JSON Schema字典,也支持Pydantic的BaseModel子类。这意味着开发者可以使用熟悉的Pydantic模型来定义输出结构,进一步简化开发流程。
插件系统升级
默认的OpenAI插件现已全面支持Schema功能,覆盖所有模型。同时,项目文档详细说明了如何为自定义模型插件添加Schema支持,为生态扩展提供了明确指导。
技术实现考量
值得注意的是,这个版本将Pydantic的依赖升级到了v2或更高版本,不再支持Pydantic v1。这一变化带来了性能提升和更丰富的功能集,但也要求开发者注意兼容性问题。Pydantic v2在数据验证和序列化方面有显著改进,能够更好地支持复杂的Schema验证场景。
应用场景示例
假设我们需要开发一个天气查询助手,希望模型返回结构化的天气信息。使用新功能,我们可以这样定义Schema:
from pydantic import BaseModel
class WeatherResponse(BaseModel):
location: str
temperature: float
unit: str
conditions: str
forecast: list[dict]
然后通过简单的API调用就能获得符合这一结构的输出,大大简化了后续处理逻辑。
总结
LLM 0.23a0版本的Schema支持功能为语言模型应用开发带来了重要进步。通过结构化输出约束,开发者能够构建更可靠、更易维护的系统。这一特性特别适合需要将语言模型集成到现有数据流水线中的场景,如数据分析、自动化工作流等。随着Pydantic v2的全面采用,项目在数据验证和处理能力上也迈上了一个新台阶。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00