LLM项目发布0.23a0版本:引入JSON Schema支持提升模型输出结构化能力
LLM是一个功能强大的命令行工具和Python库,主要用于与大型语言模型进行交互。该项目提供了简洁的接口,让开发者能够轻松地在命令行或Python代码中调用各种语言模型,处理自然语言任务。最新发布的0.23a0版本带来了重要的功能升级——JSON Schema支持,这将显著提升模型输出的结构化程度和可控性。
JSON Schema支持的核心价值
在语言模型应用中,一个常见挑战是如何确保模型输出符合预期的格式和结构。0.23a0版本通过引入JSON Schema支持,解决了这一痛点。JSON Schema是一种描述JSON数据结构的标准方式,开发者现在可以利用它来约束语言模型的输出格式,确保返回的数据符合预定义的模式。
这一功能对于构建可靠的生产系统尤为重要。当我们需要将语言模型集成到现有系统中时,结构化输出能够大大简化后续的数据处理流程,减少因格式不一致导致的错误。
主要功能特性
命令行接口增强
新版本为llm prompt命令增加了--schema选项,开发者可以直接在命令行中指定JSON Schema。例如,可以要求模型返回一个包含特定字段的对象,或者确保数组元素的类型一致。这种约束不仅提高了输出的可靠性,还能减少后续处理中的类型检查和转换工作。
Python API扩展
对于Python开发者,新版本在model.prompt()方法中增加了schema参数。这个参数既接受原生的JSON Schema字典,也支持Pydantic的BaseModel子类。这意味着开发者可以使用熟悉的Pydantic模型来定义输出结构,进一步简化开发流程。
插件系统升级
默认的OpenAI插件现已全面支持Schema功能,覆盖所有模型。同时,项目文档详细说明了如何为自定义模型插件添加Schema支持,为生态扩展提供了明确指导。
技术实现考量
值得注意的是,这个版本将Pydantic的依赖升级到了v2或更高版本,不再支持Pydantic v1。这一变化带来了性能提升和更丰富的功能集,但也要求开发者注意兼容性问题。Pydantic v2在数据验证和序列化方面有显著改进,能够更好地支持复杂的Schema验证场景。
应用场景示例
假设我们需要开发一个天气查询助手,希望模型返回结构化的天气信息。使用新功能,我们可以这样定义Schema:
from pydantic import BaseModel
class WeatherResponse(BaseModel):
location: str
temperature: float
unit: str
conditions: str
forecast: list[dict]
然后通过简单的API调用就能获得符合这一结构的输出,大大简化了后续处理逻辑。
总结
LLM 0.23a0版本的Schema支持功能为语言模型应用开发带来了重要进步。通过结构化输出约束,开发者能够构建更可靠、更易维护的系统。这一特性特别适合需要将语言模型集成到现有数据流水线中的场景,如数据分析、自动化工作流等。随着Pydantic v2的全面采用,项目在数据验证和处理能力上也迈上了一个新台阶。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00