Nix Starter Configs:解决自定义包中callPackage缺失问题
在使用Nix Starter Configs项目配置自定义包时,可能会遇到"attribute 'callPackage' missing"的错误。这个问题通常出现在尝试通过callPackage函数调用自定义Nix包时,本文将详细分析问题原因并提供解决方案。
问题现象
当用户尝试在自定义包目录(通常是/etc/nixos/pkgs/)中添加一个sddm主题包时,会遇到以下错误提示:
error: attribute 'callPackage' missing
at /nix/store/.../pkgs/default.nix:5:17:
4| # example = pkgs.callPackage ./example { };
5| sddm-themes = pkgs.callPackage ./sddm-themes.nix {};
| ^
6| }
问题分析
这个错误的根本原因是default.nix文件的函数签名不正确。在原始配置中,default.nix使用了简单的参数模式:
pkgs: {
sddm-themes = pkgs.callPackage ./sddm-themes.nix {};
}
这种写法没有正确接收pkgs参数,导致在调用callPackage时无法找到这个属性。callPackage是Nixpkgs中用于构建包的重要函数,它能够自动处理依赖注入。
解决方案
正确的做法是将default.nix改为使用花括号包裹的参数模式:
{pkgs, ...}: {
sddm-themes = pkgs.callPackage ./sddm-themes.nix {};
}
这种写法明确声明了pkgs参数,使得Nix能够正确地将pkgs集合传递给函数,从而可以访问其中的callPackage方法。
深入理解
在Nix表达式中,函数参数有两种主要声明方式:
- 简单模式:
pkgs: ...- 直接接收一个参数 - 属性集模式:
{pkgs, ...}: ...- 接收一个属性集并从中解构出pkgs
当使用flake构建系统时,Nix会以属性集的形式传递参数,因此必须使用第二种模式才能正确接收pkgs参数。
最佳实践
对于自定义包的default.nix文件,建议始终使用属性集参数模式:
{pkgs, lib, ...}@args: {
# 包定义
}
这种模式不仅更明确,还能方便地访问其他常用工具如lib,并且保留了通过@args访问所有原始参数的能力。
验证方法
修改后,可以通过以下命令验证包是否正确定义:
nix eval .#packages.x86_64-linux.sddm-themes
如果配置正确,这个命令将输出包的派生路径而不是报错。
总结
在Nix Starter Configs项目中配置自定义包时,确保default.nix使用正确的函数签名是避免"callPackage missing"错误的关键。通过采用属性集参数模式,可以确保Nix正确传递所有必要的构建工具和参数,使自定义包的构建过程更加可靠。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00