解决React-Admin项目使用pnpm安装时的Vite构建问题
在使用React-Admin 5.x版本构建项目时,如果通过pnpm进行包管理,可能会遇到一个特定的构建错误。这个错误表现为Vite在构建过程中无法解析来自react-admin模块的"ra-core"导入。
问题现象
当开发者使用pnpm安装React-Admin 5.x版本的项目依赖后,尝试使用Vite进行构建时,控制台会输出如下错误信息:
[vite]: Rollup failed to resolve import "ra-core" from "/workspace/cockpit/projects/bo/node_modules/react-admin/dist/esm/index.js
这个错误表明Vite的Rollup打包工具在解析react-admin模块的依赖关系时遇到了问题,无法正确找到"ra-core"这个内部依赖项。
问题根源
这个问题的根本原因在于pnpm的包管理机制与npm/yarn有所不同。pnpm默认使用了一种称为"严格模式"的依赖安装方式,它会为每个包创建独立的node_modules结构,而不是像npm/yarn那样将所有依赖提升到顶层node_modules中。
这种设计虽然有助于减少磁盘空间占用和避免幽灵依赖问题,但有时会导致某些依赖解析出现问题,特别是对于那些预期依赖会被提升到顶层的包。
解决方案
解决这个问题的有效方法是在项目根目录下创建一个名为.npmrc的配置文件,并添加以下配置:
shamefully-hoist=true
这个配置的作用是让pnpm模拟npm/yarn的依赖提升行为,将依赖包提升到顶层node_modules目录中。配置完成后,需要重新运行pnpm install安装依赖,之后Vite的构建过程就能正常工作了。
深入理解
shamefully-hoist这个配置名称虽然看起来有些奇怪,但它准确地反映了pnpm团队对这种行为的看法。在pnpm的设计理念中,依赖提升被认为是一种不太理想的做法,因为它可能导致幽灵依赖等问题。因此,他们将其标记为"shameful"(可耻的),但同时提供了这个选项以满足某些特殊情况的需求。
对于React-Admin这样的复杂前端框架,其内部模块之间可能存在紧密的依赖关系,依赖提升在这种情况下确实能解决许多构建问题。这也是为什么在遇到这类构建问题时,启用依赖提升是一个有效的解决方案。
最佳实践
虽然这个解决方案有效,但开发者应该注意以下几点:
- 仅在遇到构建问题时才使用这个解决方案,不要默认开启
- 了解项目中的实际依赖关系,避免引入不必要的幽灵依赖
- 定期检查项目依赖,确保没有因为依赖提升而引入的潜在问题
- 考虑向React-Admin团队反馈这个问题,以便在框架层面找到更优雅的解决方案
通过理解这个问题的本质和解决方案的原理,开发者可以更好地处理类似的前端构建问题,同时也能更深入地理解现代前端工具链的工作原理。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00