One-Handed-Keyboard 项目亮点解析
2025-05-18 16:05:12作者:霍妲思
项目基础介绍
One-Handed-Keyboard 是一个专为单手操作设计的开源键盘项目。该项目致力于帮助那些因为身体原因只能单手操作键盘的用户,提供一个舒适且高效的输入解决方案。这个键盘采用单模设计,并且集成了轨迹球,大大提高了单手操作的便捷性。键盘固件使用 QMK(Quantum Mechanical Keyboard Firmware),这是一个开源的键盘固件,可以自定义键盘布局和功能。
项目代码目录及介绍
项目的代码和资源文件主要分布在以下几个目录:
- Docs:包含芯片的数据手册和图片等文档资料。
- Firmware:存放三款不同型号键盘的 QMK 固件,以及用于 VIA 改键的 JSON 文件。
- Hardware:包含嘉立创 EDA 的项目文件,涉及键盘的硬件设计。
- Model:存放每个型号键盘使用的模型文件和加工文件。
项目亮点功能拆解
- 单手操作优化:键盘设计考虑了单手操作的习惯,布局合理,减少手指移动距离。
- 集成轨迹球:轨迹球的设计使得鼠标操作不再需要另外的手部动作,提高了操作效率。
- 热插拔键盘:支持热插拔的键盘设计,用户可以方便地更换按键,维护方便。
项目主要技术亮点拆解
- QMK 固件:使用 QMK 固件,提供了强大的自定义能力,用户可以根据自己的需求调整键盘布局和功能。
- 硬件设计:采用 FR-4 材料的 PCB 板,具有良好的耐用性和电气性能。同时,考虑到不同部件的安装和焊接,设计细致周到。
- 轨迹球控制:轨迹球的控制使用 SPI1 通道,滚轮有单独的信号线,这样的设计方便了替换其他控制设备。
与同类项目对比的亮点
与同类单手键盘项目相比,One-Handed-Keyboard 在以下方面具有明显优势:
- 功能集成:集成了轨迹球,减少了对鼠标的依赖。
- 定制性:QMK 固件提供了高度的可定制性,满足不同用户的个性化需求。
- 开发环境:提供了详细的开发环境搭建指导和固件源码,方便开发者二次开发。
One-Handed-Keyboard 项目的开源精神和实用的设计理念,使其在同类项目中脱颖而出,为单手用户提供了更好的输入体验。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
7
暂无简介
Dart
615
138
Ascend Extension for PyTorch
Python
165
184
React Native鸿蒙化仓库
JavaScript
240
314
仓颉编译器源码及 cjdb 调试工具。
C++
126
854
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
369
3.16 K
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
257
91
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
475
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
646
255