Python Unit Test Reporting to TeamCity 技术文档
本文档旨在帮助用户了解如何使用 teamcity-messages
项目,将 Python 单元测试结果报告到 TeamCity 持续集成服务器。文档内容包括安装指南、使用说明、API 使用文档以及项目安装方式。
1. 安装指南
使用 pip 安装
你可以通过 pip
命令安装 teamcity-messages
包:
pip install teamcity-messages
从源码安装
你也可以从源码安装该项目:
python setup.py install
2. 项目的使用说明
teamcity-messages
包通过发送服务消息来向 TeamCity 报告构建状态。以下是如何在不同测试框架中使用该包的说明。
unittest
如果你使用 Python 自带的 unittest
框架,可以通过修改测试运行器来集成 TeamCity 报告功能:
import unittest
from teamcity import is_running_under_teamcity
from teamcity.unittestpy import TeamcityTestRunner
class Test(unittest.TestCase):
...
if __name__ == '__main__':
if is_running_under_teamcity():
runner = TeamcityTestRunner()
else:
runner = unittest.TextTestRunner()
unittest.main(testRunner=runner)
你也可以在命令行中使用以下命令来运行测试:
python -m teamcity.unittestpy
nose
在 TeamCity 构建环境下,nose
的测试状态报告会自动启用。
py.test
在 TeamCity 构建环境下,py.test
的测试状态报告会自动启用。
Django
对于 Django 1.6+,你可以在 settings.py
中修改 TEST_RUNNER
设置,使用 TeamcityDjangoRunner
替代默认的 DiscoverRunner
:
TEST_RUNNER = "teamcity.django.TeamcityDjangoRunner"
flake8
在 TeamCity 构建环境下,flake8
的测试状态报告会自动启用。
PyLint
在运行 pylint
时,添加 --output-format=teamcity.pylint_reporter.TeamCityReporter
参数:
pylint --output-format=teamcity.pylint_reporter.TeamCityReporter
tox
在 tox
的测试虚拟环境中传递 TEAMCITY_VERSION
环境变量:
[testenv]
passenv = TEAMCITY_VERSION
Twisted trial
在运行 trial
时,添加 --reporter=teamcity
参数:
trial --reporter=teamcity
Behave
对于 Behave 1.2.6,你可以通过以下代码启用 TeamCity 报告:
from behave.formatter import _registry
from behave.configuration import Configuration
from behave.runner import Runner
from teamcity.jb_behave_formatter import TeamcityFormatter
_registry.register_as("TeamcityFormatter", TeamcityFormatter)
configuration = Configuration()
configuration.format = ["TeamcityFormatter"]
configuration.stdout_capture = False
configuration.stderr_capture = False
Runner(configuration).run()
3. 项目 API 使用文档
teamcity-messages
提供了以下主要 API:
is_running_under_teamcity()
: 检查当前是否在 TeamCity 环境下运行。TeamcityTestRunner
: 用于unittest
框架的测试运行器。TeamcityDjangoRunner
: 用于 Django 的测试运行器。TeamcityFormatter
: 用于 Behave 的格式化器。
4. 项目安装方式
使用 pip 安装
pip install teamcity-messages
从源码安装
python setup.py install
通过以上步骤,你可以成功安装并使用 teamcity-messages
包,将 Python 单元测试结果报告到 TeamCity 持续集成服务器。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~047CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









