VMamba模型训练中的Loss异常问题分析与解决
2025-06-30 04:45:25作者:鲍丁臣Ursa
问题现象描述
在使用VMamba模型进行ImageNet训练时,开发者们观察到一个特殊的现象:训练阶段的loss值表现正常,但在测试阶段却频繁出现NaN值。这一现象在项目提供的训练日志中也有明确记录,引起了多位开发者的关注和讨论。
问题根源分析
经过深入的技术探讨和代码审查,发现该问题主要与PyTorch的自动混合精度训练(AMP)机制有关。具体原因如下:
-
AMP在推理阶段的行为差异:在测试阶段使用
torch.no_grad()
时,所有数据被强制设置为float16格式,而模型中的某些计算需要更高的数值精度。 -
数值稳定性问题:某些特定的计算操作在float16精度下容易出现数值不稳定,导致结果变为NaN或inf。虽然训练阶段也有AMP,但模型内部强制部分数据保持float32精度,从而避免了训练阶段的数值问题。
-
梯度异常:相关训练日志中还观察到梯度范数(grad_norm)出现inf的情况,这与loss出现NaN有直接关联。当梯度持续出现inf时,即使AMP自动调整loss scale,也可能无法恢复正常。
解决方案
针对这一问题,项目团队提供了以下解决方案:
-
强制关键计算使用float32:在模型实现中,通过设置
force_fp32=True
参数,确保关键计算部分始终使用float32精度,即使在AMP模式下。 -
AMP配置调整:合理配置AMP的精度策略,避免在推理阶段过度使用float16。
-
梯度监控:在训练过程中加入梯度监控机制,及时发现和处理异常的梯度值。
实践验证
开发者反馈表明,在实施上述解决方案后:
- 训练过程中的inf和NaN问题得到有效控制
- 模型不再出现随机崩溃的情况
- 无论
force_fp32
参数设置为True还是False,推理结果保持一致 - 模型最终能够稳定训练并取得预期性能
技术启示
这一问题的解决过程为深度学习模型训练提供了宝贵经验:
- 混合精度训练虽然能提高效率,但需要特别注意数值稳定性问题
- 训练和推理阶段的数值行为可能存在差异,需要分别验证
- 关键计算保持高精度是保证模型稳定性的有效手段
- 完善的日志监控对发现问题至关重要
通过这一案例,开发者可以更好地理解深度学习训练中的数值稳定性问题及其解决方法,为后续的模型开发和优化工作提供参考。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5