VMamba模型训练中的Loss异常问题分析与解决
2025-06-30 04:45:25作者:鲍丁臣Ursa
问题现象描述
在使用VMamba模型进行ImageNet训练时,开发者们观察到一个特殊的现象:训练阶段的loss值表现正常,但在测试阶段却频繁出现NaN值。这一现象在项目提供的训练日志中也有明确记录,引起了多位开发者的关注和讨论。
问题根源分析
经过深入的技术探讨和代码审查,发现该问题主要与PyTorch的自动混合精度训练(AMP)机制有关。具体原因如下:
-
AMP在推理阶段的行为差异:在测试阶段使用
torch.no_grad()
时,所有数据被强制设置为float16格式,而模型中的某些计算需要更高的数值精度。 -
数值稳定性问题:某些特定的计算操作在float16精度下容易出现数值不稳定,导致结果变为NaN或inf。虽然训练阶段也有AMP,但模型内部强制部分数据保持float32精度,从而避免了训练阶段的数值问题。
-
梯度异常:相关训练日志中还观察到梯度范数(grad_norm)出现inf的情况,这与loss出现NaN有直接关联。当梯度持续出现inf时,即使AMP自动调整loss scale,也可能无法恢复正常。
解决方案
针对这一问题,项目团队提供了以下解决方案:
-
强制关键计算使用float32:在模型实现中,通过设置
force_fp32=True
参数,确保关键计算部分始终使用float32精度,即使在AMP模式下。 -
AMP配置调整:合理配置AMP的精度策略,避免在推理阶段过度使用float16。
-
梯度监控:在训练过程中加入梯度监控机制,及时发现和处理异常的梯度值。
实践验证
开发者反馈表明,在实施上述解决方案后:
- 训练过程中的inf和NaN问题得到有效控制
- 模型不再出现随机崩溃的情况
- 无论
force_fp32
参数设置为True还是False,推理结果保持一致 - 模型最终能够稳定训练并取得预期性能
技术启示
这一问题的解决过程为深度学习模型训练提供了宝贵经验:
- 混合精度训练虽然能提高效率,但需要特别注意数值稳定性问题
- 训练和推理阶段的数值行为可能存在差异,需要分别验证
- 关键计算保持高精度是保证模型稳定性的有效手段
- 完善的日志监控对发现问题至关重要
通过这一案例,开发者可以更好地理解深度学习训练中的数值稳定性问题及其解决方法,为后续的模型开发和优化工作提供参考。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
73
63

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
922
551

飞桨多语言OCR工具包(实用超轻量OCR系统,支持80+种语言识别,提供数据标注与合成工具,支持服务器、移动端、嵌入式及IoT设备端的训练与部署)
Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
Python
47
1

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8

React Native鸿蒙化仓库
C++
192
273

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
59
16