VMamba模型训练中的Loss异常问题分析与解决
2025-06-30 20:00:27作者:鲍丁臣Ursa
问题现象描述
在使用VMamba模型进行ImageNet训练时,开发者们观察到一个特殊的现象:训练阶段的loss值表现正常,但在测试阶段却频繁出现NaN值。这一现象在项目提供的训练日志中也有明确记录,引起了多位开发者的关注和讨论。
问题根源分析
经过深入的技术探讨和代码审查,发现该问题主要与PyTorch的自动混合精度训练(AMP)机制有关。具体原因如下:
-
AMP在推理阶段的行为差异:在测试阶段使用
torch.no_grad()时,所有数据被强制设置为float16格式,而模型中的某些计算需要更高的数值精度。 -
数值稳定性问题:某些特定的计算操作在float16精度下容易出现数值不稳定,导致结果变为NaN或inf。虽然训练阶段也有AMP,但模型内部强制部分数据保持float32精度,从而避免了训练阶段的数值问题。
-
梯度异常:相关训练日志中还观察到梯度范数(grad_norm)出现inf的情况,这与loss出现NaN有直接关联。当梯度持续出现inf时,即使AMP自动调整loss scale,也可能无法恢复正常。
解决方案
针对这一问题,项目团队提供了以下解决方案:
-
强制关键计算使用float32:在模型实现中,通过设置
force_fp32=True参数,确保关键计算部分始终使用float32精度,即使在AMP模式下。 -
AMP配置调整:合理配置AMP的精度策略,避免在推理阶段过度使用float16。
-
梯度监控:在训练过程中加入梯度监控机制,及时发现和处理异常的梯度值。
实践验证
开发者反馈表明,在实施上述解决方案后:
- 训练过程中的inf和NaN问题得到有效控制
- 模型不再出现随机崩溃的情况
- 无论
force_fp32参数设置为True还是False,推理结果保持一致 - 模型最终能够稳定训练并取得预期性能
技术启示
这一问题的解决过程为深度学习模型训练提供了宝贵经验:
- 混合精度训练虽然能提高效率,但需要特别注意数值稳定性问题
- 训练和推理阶段的数值行为可能存在差异,需要分别验证
- 关键计算保持高精度是保证模型稳定性的有效手段
- 完善的日志监控对发现问题至关重要
通过这一案例,开发者可以更好地理解深度学习训练中的数值稳定性问题及其解决方法,为后续的模型开发和优化工作提供参考。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
661