ROS运动规划项目中RRT*算法的子节点成本更新问题分析
2025-06-28 09:46:34作者:胡易黎Nicole
问题背景
在ROS运动规划项目(ros_motion_planning)的全局路径规划模块中,RRT算法实现存在一个关键的性能优化问题。RRT(Rapidly-exploring Random Tree Star)是一种基于采样的运动规划算法,相比基础RRT算法,它通过重布线(rewiring)操作来优化路径质量,能够渐进趋近于最优解。
问题本质
在RRT*算法的实现中,当某个节点的父节点被更新时,需要同时更新该节点所有子节点的路径成本。原始代码中缺少这一关键步骤,导致算法在重布线过程中无法正确传播成本变化,影响了路径优化的效果。
技术细节分析
RRT*算法的核心优势在于其重布线机制,该机制包含两个主要步骤:
- 父节点选择:为新节点寻找能使从起点到该节点路径成本最小的父节点
- 邻居优化:检查新节点是否能成为附近节点的更好父节点
在第二步中,当确定某个节点更换父节点能获得更低成本时,不仅需要更新该节点本身的父节点和成本,还需要递归更新其所有子节点的成本,因为子节点的路径成本是基于父节点计算的。
解决方案实现
为解决这一问题,需要对节点数据结构进行扩展并修改相关逻辑:
-
节点结构扩展:
- 在节点类中添加
cid_成员变量,用于存储所有子节点的ID - 建立明确的父子节点关系链
- 在节点类中添加
-
算法逻辑修改:
- 在重布线过程中,当更新某个节点的父节点时
- 递归遍历该节点的所有子节点
- 更新每个子节点的路径成本
- 确保整个子树都得到正确的成本更新
-
具体实现位置:
- 主要修改集中在
core/global_planner/sample_planner/src/rrt_star.cpp文件中 - 涉及三个关键代码段的修改(原问题描述中的行号132-134、142-150、150-162)
- 主要修改集中在
算法影响评估
这一改进将带来以下优势:
- 路径质量提升:确保算法能够正确计算所有节点的最优路径成本
- 收敛速度改善:避免因成本计算错误导致的无效优化迭代
- 算法正确性保证:严格遵循RRT*算法的理论设计
扩展思考
在实际应用中,这种递归更新操作可能会带来一定的计算开销,特别是当树结构较大时。可以考虑以下优化方向:
- 延迟更新策略:在特定阶段批量处理成本更新
- 并行化处理:对子树更新进行并行计算
- 增量式更新:只标记需要更新的节点,在查询时再计算
这一问题的解决不仅完善了算法的实现,也为后续性能优化奠定了基础,体现了运动规划算法实现中细节处理的重要性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1