Akegarasu/lora-scripts项目中transformers版本兼容性问题解决方案
在使用Akegarasu/lora-scripts项目进行LoRA模型训练时,许多用户遇到了一个常见的运行时错误。这个错误通常在使用v2-1_768-ema-pruned.safetensors模型进行训练时出现,错误信息显示为"Unexpected key(s) in state_dict: 'text_model.embeddings.position_ids'"。
问题分析
这个错误的核心在于模型权重加载过程中出现了不匹配的情况。具体来说,CLIPTextModel在加载状态字典(state_dict)时,发现了一个预期之外的键(key):"text_model.embeddings.position_ids"。这种问题通常发生在不同版本的transformers库之间,因为不同版本对模型结构的定义可能有所变化。
根本原因
经过技术分析,这个问题主要是由于transformers库版本过高导致的。较新版本的transformers库(如4.36.2)对模型结构进行了一些调整,而项目中使用的模型权重文件是基于较早版本的transformers库生成的。这种版本不匹配导致了状态字典加载失败。
解决方案
目前最有效的解决方案是将transformers库降级到兼容的版本。具体操作如下:
- 首先卸载当前安装的transformers库:
pip uninstall transformers
- 然后安装指定版本的transformers库:
pip install transformers==4.30.2
这个版本(4.30.2)已被证实能够正确加载模型权重,避免了上述错误。
预防措施
为了避免类似问题,建议在项目开发中:
- 明确记录和固定所有依赖库的版本号
- 使用虚拟环境隔离不同项目的依赖
- 在更新依赖库版本前进行充分测试
- 关注官方文档和社区讨论,了解版本间的重大变更
技术背景
CLIP(Contrastive Language-Image Pretraining)是一种能够理解图像和文本之间关系的模型。在LoRA(Low-Rank Adaptation)训练过程中,我们需要加载预训练的CLIP文本编码器。不同版本的transformers库对CLIP模型结构的实现细节可能有所不同,特别是像position_ids这样的位置编码参数的处理方式可能会有变化。
总结
版本兼容性问题是深度学习项目开发中的常见挑战。通过合理管理依赖版本,特别是像transformers这样的核心库,可以避免许多潜在的问题。对于Akegarasu/lora-scripts项目用户,暂时使用transformers 4.30.2版本是一个经过验证的可靠解决方案。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









