TensorRT引擎缓存中哈希计算性能问题的分析与优化
2025-06-29 12:46:25作者:董灵辛Dennis
在PyTorch/TensorRT项目中,当使用引擎缓存功能时,开发人员发现重用缓存的引擎比从头开始训练一个不可重构的引擎还要慢。经过深入分析,发现问题出在FxGraphCachePickler.get_hash(new_gm)这个哈希计算函数上,它占据了总编译时间的很大一部分。
问题背景
在TensorRT引擎缓存机制中,为了能够重用之前编译好的引擎,系统需要为当前的模型计算一个唯一的哈希值作为缓存键。这个哈希值是通过FxGraphCachePickler.get_hash(new_gm)函数生成的,它首先将模型序列化,然后计算序列化数据的SHA256哈希。
性能瓶颈分析
通过实际测试Llama2-7b模型,发现哈希计算阶段消耗了惊人的时间:
- 在启用缓存的REFIT模式下,第一次运行(需要构建引擎并保存到缓存)耗时约727660ms,其中哈希计算就占了323009ms
- 后续运行(直接重用缓存的引擎)耗时约410300ms,哈希计算仍然占了323275ms
- 相比之下,从头编译一个不可重构的引擎仅需约267709ms
进一步分析发现,FxGraphCachePickler.get_hash(new_gm)函数中,serialized_data = cls.dumps(obj)这一行序列化操作消耗了绝大部分时间,而实际的SHA256哈希计算耗时很少。
问题根源
经过与PyTorch团队的沟通,确认这个性能问题的根源在于Python的pickle序列化机制。对于大型模型,pickle序列化会非常耗时,而PyTorch团队表示这是pickle本身的限制,无法在他们的层面进行优化。
解决方案
为了解决这个问题,开发团队设计并实现了一个新的哈希函数,完全绕过了pickle序列化步骤。这个新方案通过直接处理模型的关键特征来生成哈希值,避免了昂贵的序列化操作。
新方案的主要特点包括:
- 直接提取模型图中的关键信息(如操作类型、参数形状等)
- 使用更高效的哈希计算方法
- 保持与原有哈希相同的唯一性保证
实施效果
通过PR #3293提交的这个优化,显著提升了引擎缓存重用的性能:
- 哈希计算时间从原来的300多秒降低到几乎可以忽略不计
- 重用缓存的引擎现在比从头编译要快得多
- 整体编译时间大幅缩短,特别是在需要频繁重用缓存的场景下
这个优化对于大型模型特别有益,使得TensorRT的引擎缓存功能真正发挥出了其应有的价值,为模型部署和推理提供了显著的性能提升。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248