在CVAT中限制工作用户下载权限的技术实现
背景介绍
CVAT(Computer Vision Annotation Tool)是一个开源的计算机视觉标注工具,广泛应用于机器学习数据标注领域。在实际使用中,数据安全是一个重要考量因素,特别是当项目涉及敏感数据时,管理员可能需要限制某些用户(如标注员)的下载权限,防止数据被不当导出。
权限控制原理
CVAT采用OPA(Open Policy Agent)作为权限控制引擎,通过.rego规则文件定义各种操作权限。对于工作用户(Worker)的下载权限控制,主要涉及两个关键文件:
jobs.rego- 控制任务相关的权限tasks.rego- 控制任务集相关的权限
这些文件定义了不同角色用户对各类操作(查看、导出等)的访问权限。
实现步骤
1. 修改权限规则文件
要限制工作用户的下载权限,需要注释掉相关规则中的导出权限定义。具体操作如下:
在tasks.rego文件中找到权限定义部分,注释掉utils.EXPORT_DATASET和utils.EXPORT_ANNOTATIONS这两个导出权限:
allow if {
input.scope in {
utils.VIEW,
# utils.EXPORT_DATASET, utils.EXPORT_ANNOTATIONS,
utils.VIEW_ANNOTATIONS, utils.VIEW_DATA, utils.VIEW_METADATA
}
input.auth.organization.id == input.resource.organization.id
organizations.has_perm(organizations.WORKER)
is_task_staff
}
2. 完整重建服务
修改规则文件后,需要完全重建CVAT服务才能使更改生效。这是因为:
cvat_server负责提供规则包cvat_opa负责实际的授权决策
仅重建cvat_server是不够的,必须确保所有相关服务都重新启动以加载新的权限规则。
执行以下命令进行完整重建:
sudo docker compose -f docker-compose.yml -f docker-compose.dev.yml down
sudo docker compose -f docker-compose.yml -f docker-compose.dev.yml up -d --build
技术要点
-
权限粒度控制:CVAT的权限系统支持细粒度的控制,可以精确到每个操作类型。
-
多服务协作:权限系统的生效需要多个服务协同工作,理解这一点对调试权限问题很重要。
-
沙箱环境:CVAT支持沙箱环境,可以针对不同环境设置不同的权限规则。
-
组织架构集成:权限系统与组织架构深度集成,可以根据用户在不同组织中的角色分配权限。
最佳实践
-
修改权限规则前,建议备份原始文件。
-
测试权限变更时,建议使用测试账号验证效果,避免影响正常用户。
-
对于生产环境,建议通过版本控制系统管理权限规则的变更。
-
如果权限修改未生效,检查所有相关服务是否已正确重启。
通过以上方法,可以有效控制CVAT平台中不同用户的下载权限,保障数据安全,同时不影响正常的标注工作流程。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00