在CVAT中限制工作用户下载权限的技术实现
背景介绍
CVAT(Computer Vision Annotation Tool)是一个开源的计算机视觉标注工具,广泛应用于机器学习数据标注领域。在实际使用中,数据安全是一个重要考量因素,特别是当项目涉及敏感数据时,管理员可能需要限制某些用户(如标注员)的下载权限,防止数据被不当导出。
权限控制原理
CVAT采用OPA(Open Policy Agent)作为权限控制引擎,通过.rego规则文件定义各种操作权限。对于工作用户(Worker)的下载权限控制,主要涉及两个关键文件:
jobs.rego- 控制任务相关的权限tasks.rego- 控制任务集相关的权限
这些文件定义了不同角色用户对各类操作(查看、导出等)的访问权限。
实现步骤
1. 修改权限规则文件
要限制工作用户的下载权限,需要注释掉相关规则中的导出权限定义。具体操作如下:
在tasks.rego文件中找到权限定义部分,注释掉utils.EXPORT_DATASET和utils.EXPORT_ANNOTATIONS这两个导出权限:
allow if {
input.scope in {
utils.VIEW,
# utils.EXPORT_DATASET, utils.EXPORT_ANNOTATIONS,
utils.VIEW_ANNOTATIONS, utils.VIEW_DATA, utils.VIEW_METADATA
}
input.auth.organization.id == input.resource.organization.id
organizations.has_perm(organizations.WORKER)
is_task_staff
}
2. 完整重建服务
修改规则文件后,需要完全重建CVAT服务才能使更改生效。这是因为:
cvat_server负责提供规则包cvat_opa负责实际的授权决策
仅重建cvat_server是不够的,必须确保所有相关服务都重新启动以加载新的权限规则。
执行以下命令进行完整重建:
sudo docker compose -f docker-compose.yml -f docker-compose.dev.yml down
sudo docker compose -f docker-compose.yml -f docker-compose.dev.yml up -d --build
技术要点
-
权限粒度控制:CVAT的权限系统支持细粒度的控制,可以精确到每个操作类型。
-
多服务协作:权限系统的生效需要多个服务协同工作,理解这一点对调试权限问题很重要。
-
沙箱环境:CVAT支持沙箱环境,可以针对不同环境设置不同的权限规则。
-
组织架构集成:权限系统与组织架构深度集成,可以根据用户在不同组织中的角色分配权限。
最佳实践
-
修改权限规则前,建议备份原始文件。
-
测试权限变更时,建议使用测试账号验证效果,避免影响正常用户。
-
对于生产环境,建议通过版本控制系统管理权限规则的变更。
-
如果权限修改未生效,检查所有相关服务是否已正确重启。
通过以上方法,可以有效控制CVAT平台中不同用户的下载权限,保障数据安全,同时不影响正常的标注工作流程。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00