MMKV v2.2.0发布:文件描述符优化与多进程性能提升
关于MMKV
MMKV是腾讯开源的一款高性能键值存储组件,专为移动端设计。相比传统的SharedPreferences等方案,MMKV在读写性能上有显著优势,特别适合存储频繁访问的配置数据。其核心特点是基于内存映射文件实现,避免了传统IO操作带来的性能损耗。
核心改进:Mayfly FD技术
本次v2.2.0版本最引人注目的改进是引入了"Mayfly FD"(短生命周期文件描述符)技术。这项创新技术从根本上改变了MMKV管理文件描述符的方式:
-
单进程模式:在非Android/OHOS平台上,文件描述符占用降为零。这意味着在这些平台上运行的应用程序将不再因为MMKV而消耗任何长期持有的文件描述符资源。
-
多进程模式:文件描述符占用减少50%。虽然仍需保留一个长期文件描述符用于进程间共享内存的锁定,但整体资源占用显著降低。
这项改进对于移动应用尤为重要,因为:
- 减少了系统资源消耗
- 降低了因文件描述符耗尽导致崩溃的风险
- 提高了应用在资源受限设备上的稳定性
多进程访问性能优化
v2.2.0版本在多进程访问效率上实现了约20%的提升。这一改进使得:
- 跨进程数据同步更迅速
- 多进程并发访问时的延迟降低
- 整体响应速度更快
对于依赖多进程架构的应用(如某些插件化框架或模块化应用),这一优化将带来明显的用户体验提升。
新增功能与API改进
-
checkExist()方法:新增的API允许开发者检查特定MMKV实例是否已存在于磁盘上,为数据管理提供了更多灵活性。
-
iOS平台新增mmkvGroupPath:为iOS开发者提供了获取MMKV多进程存储组文件夹的便捷方式,简化了多进程数据共享的实现。
平台特定优化
Android平台
- 虽然引入了Mayfly FD技术,但Android平台仍需保留一个长期文件描述符,用于支持进程模式检查和旧版名称升级。
- 工具链全面升级:compileSdk/targetSdk升至35,NDK升至28.1,Java升至11,Gradle升至8.11.1,AGP升至8.9.2。
HarmonyOS NEXT平台
- 同样实现了文件描述符占用减半
- 移除了从未使用的checkProcessMode()方法
- 改进了混淆配置,使用相对路径更灵活
iOS平台
- 新增的mmkvGroupPath方法简化了多进程场景下的数据共享
- 完全实现了零文件描述符占用的理想状态
向后兼容性考虑
本次更新移除了对armv7 AES硬件加速的支持,这是考虑到现代移动设备普遍采用更先进的架构。开发者如果仍需支持较旧设备,需要考虑替代方案。
未来展望
从版本说明可以看出,MMKV团队计划在未来完全消除Android和OHOS平台上保留的长期文件描述符,前提是所有旧版名称升级完成。这体现了项目对资源优化的持续追求。
升级建议
对于正在使用MMKV的开发者,v2.2.0版本值得升级,特别是:
- 关注系统资源占用的应用
- 使用多进程架构的应用
- 需要频繁访问键值存储的场景
升级时需要注意移除对已弃用功能的依赖,并测试新API的兼容性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00