ReactiveSearch 开源项目教程
1. 项目介绍
ReactiveSearch 是一个用于 React 和 Vue 的 UI 组件库,专为与 ReactiveSearch 云服务配合使用而设计。它提供了超过 20 个 UI 组件,包括列表、范围选择、搜索界面、结果展示、AI 回答、图表等,能够帮助开发者快速构建复杂的搜索界面。ReactiveSearch 支持与 Elasticsearch、OpenSearch、Solr 和 MongoDB 等后端搜索引擎集成,适用于构建各种搜索应用,如电子商务、电影搜索、仪表盘等。
2. 项目快速启动
安装
首先,你需要在你的项目中安装 ReactiveSearch 库。如果你使用的是 React,可以使用以下命令进行安装:
npm install @appbaseio/reactivesearch
如果你使用的是 Vue,可以使用以下命令进行安装:
npm install @appbaseio/reactivesearch-vue
快速示例
以下是一个简单的 React 示例,展示如何使用 ReactiveSearch 构建一个基本的搜索界面:
import React from 'react';
import { ReactiveBase, DataSearch, ReactiveList } from '@appbaseio/reactivesearch';
const App = () => (
<ReactiveBase
app="good-books-ds"
credentials="X1-ZWz1g97zxa721e_3mtq"
>
<DataSearch
componentId="searchbox"
dataField={['original_title', 'original_title.search']}
placeholder="Search for books"
/>
<ReactiveList
componentId="result"
dataField="original_title"
size={10}
pagination={true}
react={{
and: ["searchbox"]
}}
renderItem={(res) => (
<div key={res._id}>
<h3>{res.original_title}</h3>
<p>{res.authors}</p>
</div>
)}
/>
</ReactiveBase>
);
export default App;
在这个示例中,我们使用了 ReactiveBase
作为基础组件,DataSearch
用于搜索框,ReactiveList
用于展示搜索结果。
3. 应用案例和最佳实践
电子商务搜索界面
ReactiveSearch 可以用于构建复杂的电子商务搜索界面。例如,你可以使用 SingleList
组件来实现类别过滤,RangeSlider
组件来实现价格范围过滤,SearchBox
组件来实现搜索功能,ReactiveList
组件来展示搜索结果。
电影搜索应用
你可以使用 ReactiveSearch 构建一个电影搜索应用,用户可以通过搜索框查找电影,并使用过滤器来缩小搜索范围。你可以参考 Movie Search Demo 了解更多详细信息。
仪表盘搜索和图表
ReactiveSearch 还支持与图表组件集成,可以用于构建包含搜索和图表功能的仪表盘。你可以参考 Dashboard Search and Charts Demo 了解更多详细信息。
4. 典型生态项目
ReactiveSearch API
ReactiveSearch API 是一个 API 网关,用于与 Elasticsearch、OpenSearch、Solr 和 MongoDB 等搜索引擎集成。它提供了安全性、速率限制、记录分析和请求日志等功能。
Searchbox
Searchbox 是一个轻量级且性能优化的搜索框 UI 库,用于查询和显示 ReactiveSearch 云服务的结果。它支持 Vanilla JS、React Native 和 Flutter 等框架。
dejavu
dejavu 是一个 Elasticsearch 和 OpenSearch 的数据查看和编辑应用,可以帮助你管理和查看你的搜索数据。
appbase-js
appbase-js 是一个用于索引数据的 JavaScript 库,适用于需要与 ReactiveSearch 云服务集成的项目。
通过这些生态项目,你可以进一步扩展和增强你的搜索应用功能。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0113AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









