ReactiveSearch 开源项目教程
1. 项目介绍
ReactiveSearch 是一个用于 React 和 Vue 的 UI 组件库,专为与 ReactiveSearch 云服务配合使用而设计。它提供了超过 20 个 UI 组件,包括列表、范围选择、搜索界面、结果展示、AI 回答、图表等,能够帮助开发者快速构建复杂的搜索界面。ReactiveSearch 支持与 Elasticsearch、OpenSearch、Solr 和 MongoDB 等后端搜索引擎集成,适用于构建各种搜索应用,如电子商务、电影搜索、仪表盘等。
2. 项目快速启动
安装
首先,你需要在你的项目中安装 ReactiveSearch 库。如果你使用的是 React,可以使用以下命令进行安装:
npm install @appbaseio/reactivesearch
如果你使用的是 Vue,可以使用以下命令进行安装:
npm install @appbaseio/reactivesearch-vue
快速示例
以下是一个简单的 React 示例,展示如何使用 ReactiveSearch 构建一个基本的搜索界面:
import React from 'react';
import { ReactiveBase, DataSearch, ReactiveList } from '@appbaseio/reactivesearch';
const App = () => (
<ReactiveBase
app="good-books-ds"
credentials="X1-ZWz1g97zxa721e_3mtq"
>
<DataSearch
componentId="searchbox"
dataField={['original_title', 'original_title.search']}
placeholder="Search for books"
/>
<ReactiveList
componentId="result"
dataField="original_title"
size={10}
pagination={true}
react={{
and: ["searchbox"]
}}
renderItem={(res) => (
<div key={res._id}>
<h3>{res.original_title}</h3>
<p>{res.authors}</p>
</div>
)}
/>
</ReactiveBase>
);
export default App;
在这个示例中,我们使用了 ReactiveBase
作为基础组件,DataSearch
用于搜索框,ReactiveList
用于展示搜索结果。
3. 应用案例和最佳实践
电子商务搜索界面
ReactiveSearch 可以用于构建复杂的电子商务搜索界面。例如,你可以使用 SingleList
组件来实现类别过滤,RangeSlider
组件来实现价格范围过滤,SearchBox
组件来实现搜索功能,ReactiveList
组件来展示搜索结果。
电影搜索应用
你可以使用 ReactiveSearch 构建一个电影搜索应用,用户可以通过搜索框查找电影,并使用过滤器来缩小搜索范围。你可以参考 Movie Search Demo 了解更多详细信息。
仪表盘搜索和图表
ReactiveSearch 还支持与图表组件集成,可以用于构建包含搜索和图表功能的仪表盘。你可以参考 Dashboard Search and Charts Demo 了解更多详细信息。
4. 典型生态项目
ReactiveSearch API
ReactiveSearch API 是一个 API 网关,用于与 Elasticsearch、OpenSearch、Solr 和 MongoDB 等搜索引擎集成。它提供了安全性、速率限制、记录分析和请求日志等功能。
Searchbox
Searchbox 是一个轻量级且性能优化的搜索框 UI 库,用于查询和显示 ReactiveSearch 云服务的结果。它支持 Vanilla JS、React Native 和 Flutter 等框架。
dejavu
dejavu 是一个 Elasticsearch 和 OpenSearch 的数据查看和编辑应用,可以帮助你管理和查看你的搜索数据。
appbase-js
appbase-js 是一个用于索引数据的 JavaScript 库,适用于需要与 ReactiveSearch 云服务集成的项目。
通过这些生态项目,你可以进一步扩展和增强你的搜索应用功能。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









