ReactiveSearch 开源项目教程
1. 项目介绍
ReactiveSearch 是一个用于 React 和 Vue 的 UI 组件库,专为与 ReactiveSearch 云服务配合使用而设计。它提供了超过 20 个 UI 组件,包括列表、范围选择、搜索界面、结果展示、AI 回答、图表等,能够帮助开发者快速构建复杂的搜索界面。ReactiveSearch 支持与 Elasticsearch、OpenSearch、Solr 和 MongoDB 等后端搜索引擎集成,适用于构建各种搜索应用,如电子商务、电影搜索、仪表盘等。
2. 项目快速启动
安装
首先,你需要在你的项目中安装 ReactiveSearch 库。如果你使用的是 React,可以使用以下命令进行安装:
npm install @appbaseio/reactivesearch
如果你使用的是 Vue,可以使用以下命令进行安装:
npm install @appbaseio/reactivesearch-vue
快速示例
以下是一个简单的 React 示例,展示如何使用 ReactiveSearch 构建一个基本的搜索界面:
import React from 'react';
import { ReactiveBase, DataSearch, ReactiveList } from '@appbaseio/reactivesearch';
const App = () => (
<ReactiveBase
app="good-books-ds"
credentials="X1-ZWz1g97zxa721e_3mtq"
>
<DataSearch
componentId="searchbox"
dataField={['original_title', 'original_title.search']}
placeholder="Search for books"
/>
<ReactiveList
componentId="result"
dataField="original_title"
size={10}
pagination={true}
react={{
and: ["searchbox"]
}}
renderItem={(res) => (
<div key={res._id}>
<h3>{res.original_title}</h3>
<p>{res.authors}</p>
</div>
)}
/>
</ReactiveBase>
);
export default App;
在这个示例中,我们使用了 ReactiveBase 作为基础组件,DataSearch 用于搜索框,ReactiveList 用于展示搜索结果。
3. 应用案例和最佳实践
电子商务搜索界面
ReactiveSearch 可以用于构建复杂的电子商务搜索界面。例如,你可以使用 SingleList 组件来实现类别过滤,RangeSlider 组件来实现价格范围过滤,SearchBox 组件来实现搜索功能,ReactiveList 组件来展示搜索结果。
电影搜索应用
你可以使用 ReactiveSearch 构建一个电影搜索应用,用户可以通过搜索框查找电影,并使用过滤器来缩小搜索范围。你可以参考 Movie Search Demo 了解更多详细信息。
仪表盘搜索和图表
ReactiveSearch 还支持与图表组件集成,可以用于构建包含搜索和图表功能的仪表盘。你可以参考 Dashboard Search and Charts Demo 了解更多详细信息。
4. 典型生态项目
ReactiveSearch API
ReactiveSearch API 是一个 API 网关,用于与 Elasticsearch、OpenSearch、Solr 和 MongoDB 等搜索引擎集成。它提供了安全性、速率限制、记录分析和请求日志等功能。
Searchbox
Searchbox 是一个轻量级且性能优化的搜索框 UI 库,用于查询和显示 ReactiveSearch 云服务的结果。它支持 Vanilla JS、React Native 和 Flutter 等框架。
dejavu
dejavu 是一个 Elasticsearch 和 OpenSearch 的数据查看和编辑应用,可以帮助你管理和查看你的搜索数据。
appbase-js
appbase-js 是一个用于索引数据的 JavaScript 库,适用于需要与 ReactiveSearch 云服务集成的项目。
通过这些生态项目,你可以进一步扩展和增强你的搜索应用功能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00