Langchain-Chatchat项目中Ollama模型接入配置指南
2025-05-04 17:56:08作者:裘晴惠Vivianne
背景介绍
Langchain-Chatchat作为一款基于大语言模型的对话系统,在0.3.0版本后对模型加载方式进行了重大调整。新版本要求所有LLM和embedding模型必须通过模型部署框架进行加载,这为系统集成带来了新的配置挑战。
核心问题分析
在项目升级过程中,用户常遇到embedding模型无法加载的问题。这主要是因为:
- 新版本改变了模型加载机制
- 中文embedding模型资源相对稀缺
- 配置方式与旧版本有显著差异
Ollama模型接入解决方案
准备工作
首先需要拉取必要的模型文件:
- 基础语言模型:
ollama pull qwen2:72b - 中文embedding模型:
ollama pull quentinz/bge-large-zh-v1.5:latest
详细配置步骤
通过以下命令完成系统配置:
chatchat-config model --set_model_platforms "[{
\"platform_name\": \"ollama\",
\"platform_type\": \"ollama\",
\"api_base_url\": \"http://127.0.0.1:11434/v1\",
\"api_key\": \"sk-key\",
\"api_concurrencies\": 5,
\"llm_models\": [
\"qwen2:72b\"
],
\"embed_models\": [
\"quentinz/bge-large-zh-v1.5:latest\"
],
\"image_models\": [],
\"reranking_models\": [],
\"speech2text_models\": [],
\"tts_models\": []
}]"
chatchat-config model --default_llm_model qwen2:72b
chatchat-config model --default_embedding_model quentinz/bge-large-zh-v1.5:latest
配置说明
- 平台设置:明确指定使用Ollama作为模型平台
- API配置:设置本地Ollama服务的访问地址和端口
- 模型分配:分别配置LLM和embedding模型
- 默认模型:设置系统默认使用的语言模型和embedding模型
注意事项
- 中文embedding模型在Ollama上可选范围有限,quentinz/bge-large-zh-v1.5是目前较好的选择
- 确保Ollama服务已正确启动并监听指定端口
- 0.3.1版本后配置方式进一步优化,建议升级到最新版本
最佳实践建议
对于生产环境部署,建议:
- 定期检查Ollama上的模型更新
- 考虑搭建私有模型仓库确保稳定性
- 对不同业务场景进行embedding效果测试
- 监控模型加载和使用情况
通过以上配置,用户可以顺利完成Langchain-Chatchat与Ollama的集成,充分利用本地部署的大语言模型能力。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660