STUMPY项目中的时间序列模式匹配可视化标准化问题
2025-06-17 22:24:47作者:劳婵绚Shirley
在时间序列分析领域,STUMPY是一个强大的Python库,专门用于计算矩阵剖面(Matrix Profile)和执行各种时间序列模式匹配任务。本文将深入探讨STUMPY项目中一个重要的可视化标准化问题,特别是当处理不同量纲的时间序列数据时。
问题背景
在STUMPY的Tutorial_AB_Joins教程中,演示了如何可视化两个时间序列中的匹配模式(motif)。教程中展示的示例使用了Queen乐队的"Under Pressure"和Vanilla Ice的"Ice Ice Baby"两首歌曲的音频片段。由于这两个音频片段的频率值范围相近,直接绘制它们的原始数据不会产生明显的可视化问题。
然而,当用户处理其他时间序列数据时,如果两个序列的y值范围差异较大,直接可视化原始数据会导致图形失真,难以准确比较两个模式之间的相似性。这就是为什么在模式匹配可视化前进行标准化处理如此重要。
解决方案
正确的做法是在可视化前对两个时间序列的子序列进行z-score标准化处理。标准化后的数据具有以下特点:
- 均值为0
- 标准差为1
- 保留了原始数据的形状特征
STUMPY提供了core.z_norm()
函数来实现这一标准化过程。具体实现代码如下:
from stumpy import core
import matplotlib.pyplot as plt
# 对两个motif进行z-score标准化
queen_z_norm_motif = core.z_norm(queen_df.iloc[queen_motif_index : queen_motif_index + m].values)
vanilla_ice_z_norm_motif = core.z_norm(vanilla_ice_df.iloc[vanilla_ice_motif_index:vanilla_ice_motif_index+m].values)
# 绘制标准化后的motif
plt.plot(queen_z_norm_motif, label='Under Pressure')
plt.plot(vanilla_ice_z_norm_motif, label='Ice Ice Baby')
plt.xlabel('时间')
plt.ylabel('标准化频率值')
plt.legend()
plt.show()
为什么标准化很重要
- 消除量纲影响:不同时间序列可能具有完全不同的数值范围,标准化可以消除这种差异
- 公平比较:确保模式匹配是基于形状相似性而非绝对数值大小
- 可视化一致性:使不同来源的数据可以在同一尺度下比较
- 算法性能:许多时间序列分析算法在标准化数据上表现更好
实际应用建议
- 当比较来自不同源的时间序列时,总是考虑进行标准化
- 在计算矩阵剖面前,STUMPY会自动对数据进行标准化处理
- 可视化时,如果直接使用原始数据,确保它们具有可比的范围,否则应该标准化
- 标准化后的数据更适合用于模式相似性比较和异常检测等任务
通过遵循这些最佳实践,用户可以确保他们的时间序列分析结果更加准确可靠,可视化效果也更加清晰直观。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0113AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
217
2.23 K

暂无简介
Dart
523
116

React Native鸿蒙化仓库
JavaScript
210
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
982
580

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
564
87

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
33
0