STUMPY项目中的时间序列模式匹配可视化标准化问题
2025-06-17 17:00:41作者:劳婵绚Shirley
在时间序列分析领域,STUMPY是一个强大的Python库,专门用于计算矩阵剖面(Matrix Profile)和执行各种时间序列模式匹配任务。本文将深入探讨STUMPY项目中一个重要的可视化标准化问题,特别是当处理不同量纲的时间序列数据时。
问题背景
在STUMPY的Tutorial_AB_Joins教程中,演示了如何可视化两个时间序列中的匹配模式(motif)。教程中展示的示例使用了Queen乐队的"Under Pressure"和Vanilla Ice的"Ice Ice Baby"两首歌曲的音频片段。由于这两个音频片段的频率值范围相近,直接绘制它们的原始数据不会产生明显的可视化问题。
然而,当用户处理其他时间序列数据时,如果两个序列的y值范围差异较大,直接可视化原始数据会导致图形失真,难以准确比较两个模式之间的相似性。这就是为什么在模式匹配可视化前进行标准化处理如此重要。
解决方案
正确的做法是在可视化前对两个时间序列的子序列进行z-score标准化处理。标准化后的数据具有以下特点:
- 均值为0
- 标准差为1
- 保留了原始数据的形状特征
STUMPY提供了core.z_norm()函数来实现这一标准化过程。具体实现代码如下:
from stumpy import core
import matplotlib.pyplot as plt
# 对两个motif进行z-score标准化
queen_z_norm_motif = core.z_norm(queen_df.iloc[queen_motif_index : queen_motif_index + m].values)
vanilla_ice_z_norm_motif = core.z_norm(vanilla_ice_df.iloc[vanilla_ice_motif_index:vanilla_ice_motif_index+m].values)
# 绘制标准化后的motif
plt.plot(queen_z_norm_motif, label='Under Pressure')
plt.plot(vanilla_ice_z_norm_motif, label='Ice Ice Baby')
plt.xlabel('时间')
plt.ylabel('标准化频率值')
plt.legend()
plt.show()
为什么标准化很重要
- 消除量纲影响:不同时间序列可能具有完全不同的数值范围,标准化可以消除这种差异
- 公平比较:确保模式匹配是基于形状相似性而非绝对数值大小
- 可视化一致性:使不同来源的数据可以在同一尺度下比较
- 算法性能:许多时间序列分析算法在标准化数据上表现更好
实际应用建议
- 当比较来自不同源的时间序列时,总是考虑进行标准化
- 在计算矩阵剖面前,STUMPY会自动对数据进行标准化处理
- 可视化时,如果直接使用原始数据,确保它们具有可比的范围,否则应该标准化
- 标准化后的数据更适合用于模式相似性比较和异常检测等任务
通过遵循这些最佳实践,用户可以确保他们的时间序列分析结果更加准确可靠,可视化效果也更加清晰直观。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.7 K
暂无简介
Dart
633
143
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
271
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
React Native鸿蒙化仓库
JavaScript
243
316
Ascend Extension for PyTorch
Python
194
212