首页
/ STUMPY项目中的时间序列模式匹配可视化标准化问题

STUMPY项目中的时间序列模式匹配可视化标准化问题

2025-06-17 22:24:47作者:劳婵绚Shirley

在时间序列分析领域,STUMPY是一个强大的Python库,专门用于计算矩阵剖面(Matrix Profile)和执行各种时间序列模式匹配任务。本文将深入探讨STUMPY项目中一个重要的可视化标准化问题,特别是当处理不同量纲的时间序列数据时。

问题背景

在STUMPY的Tutorial_AB_Joins教程中,演示了如何可视化两个时间序列中的匹配模式(motif)。教程中展示的示例使用了Queen乐队的"Under Pressure"和Vanilla Ice的"Ice Ice Baby"两首歌曲的音频片段。由于这两个音频片段的频率值范围相近,直接绘制它们的原始数据不会产生明显的可视化问题。

然而,当用户处理其他时间序列数据时,如果两个序列的y值范围差异较大,直接可视化原始数据会导致图形失真,难以准确比较两个模式之间的相似性。这就是为什么在模式匹配可视化前进行标准化处理如此重要。

解决方案

正确的做法是在可视化前对两个时间序列的子序列进行z-score标准化处理。标准化后的数据具有以下特点:

  1. 均值为0
  2. 标准差为1
  3. 保留了原始数据的形状特征

STUMPY提供了core.z_norm()函数来实现这一标准化过程。具体实现代码如下:

from stumpy import core
import matplotlib.pyplot as plt

# 对两个motif进行z-score标准化
queen_z_norm_motif = core.z_norm(queen_df.iloc[queen_motif_index : queen_motif_index + m].values)
vanilla_ice_z_norm_motif = core.z_norm(vanilla_ice_df.iloc[vanilla_ice_motif_index:vanilla_ice_motif_index+m].values)

# 绘制标准化后的motif
plt.plot(queen_z_norm_motif, label='Under Pressure')
plt.plot(vanilla_ice_z_norm_motif, label='Ice Ice Baby')

plt.xlabel('时间')
plt.ylabel('标准化频率值')
plt.legend()
plt.show()

为什么标准化很重要

  1. 消除量纲影响:不同时间序列可能具有完全不同的数值范围,标准化可以消除这种差异
  2. 公平比较:确保模式匹配是基于形状相似性而非绝对数值大小
  3. 可视化一致性:使不同来源的数据可以在同一尺度下比较
  4. 算法性能:许多时间序列分析算法在标准化数据上表现更好

实际应用建议

  1. 当比较来自不同源的时间序列时,总是考虑进行标准化
  2. 在计算矩阵剖面前,STUMPY会自动对数据进行标准化处理
  3. 可视化时,如果直接使用原始数据,确保它们具有可比的范围,否则应该标准化
  4. 标准化后的数据更适合用于模式相似性比较和异常检测等任务

通过遵循这些最佳实践,用户可以确保他们的时间序列分析结果更加准确可靠,可视化效果也更加清晰直观。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
217
2.23 K
flutter_flutterflutter_flutter
暂无简介
Dart
523
116
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
JavaScript
210
285
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
982
580
pytorchpytorch
Ascend Extension for PyTorch
Python
67
97
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
564
87
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
GLM-4.6GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
33
0