NonSteamLaunchers项目v4.1.1版本更新解析
项目简介
NonSteamLaunchers是一款旨在帮助Steam Deck用户在SteamOS上运行非Steam游戏平台的工具。它通过简化安装和配置过程,让用户能够轻松地在Steam Deck上使用Epic Games、GOG、Origin等游戏平台。最新发布的v4.1.1版本带来了一些重要改进和功能增强。
核心更新内容
社区笔记系统路径修复
v4.1.1版本重点修复了NSL社区笔记系统的路径问题。这个实验性功能允许用户为游戏添加自定义笔记,并通过点击红色心形按钮分享给社区。修复后,笔记功能将更加稳定可靠。
Epic Games Launcher问题解决
开发团队解决了Epic Games Launcher的更新循环问题。虽然用户仍需手动安装Epic Online Services(EOS),但主要的启动器问题已经得到修复,使用体验显著提升。
游戏描述功能增强
新版本扩展了笔记系统的功能,现在用户创建笔记时,系统会自动提供游戏描述信息。这一改进使得游戏库管理更加直观和便捷。
桌面版与插件版差异
项目现在提供两个不同的.desktop文件,满足不同用户需求:
-
桌面版本:包含完整的NonSteamLaunchers功能,并新增了直接安装最新NSL Decky Loader插件的选项。
-
插件版本:专为已安装Decky Loader的用户设计,提供轻量级的安装/更新方式,无需进入桌面模式。
Windows平台支持
对于Windows用户,v4.1.1版本提供了专门的安装流程:
-
首先运行NSLPluginWindows.exe,该程序会创建必要的cef调试文件。
-
然后可选择运行No_console.exe或Plugin Loader.exe。
-
进入游戏模式或大屏幕模式后,即可看到Decky Loader插件和NonSteamLaunchers功能。
需要注意的是,Windows版本目前仅支持游戏扫描功能,其他高级功能暂不可用。
技术实现亮点
-
跨平台兼容性:项目同时支持Linux和Windows系统,通过不同的可执行文件实现功能适配。
-
社区驱动开发:笔记系统的改进体现了项目对社区反馈的重视,增强了用户互动体验。
-
模块化设计:分离桌面版和插件版的安装文件,让用户可以根据实际需求选择最适合的版本。
使用建议
对于Steam Deck用户,推荐根据使用场景选择合适的版本:
-
需要完整功能且不介意使用桌面模式的用户,可选择桌面版本。
-
已安装Decky Loader且希望保持游戏模式完整性的用户,插件版本是更好的选择。
对于Windows用户,虽然功能有限,但自动添加游戏并生成正确格式的封面艺术这一特性,仍然大大简化了非Steam游戏的管理流程。
总结
NonSteamLaunchers v4.1.1版本通过修复关键问题、增强现有功能,进一步提升了在Steam Deck和Windows平台上管理非Steam游戏的体验。特别是社区笔记系统的改进和Epic Games Launcher问题的解决,显示了开发团队对用户体验的持续关注。随着项目的不断发展,它正成为跨平台游戏管理的重要工具之一。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00