深入理解The Lightning Network Book中的简化Schnorr签名示例
2025-06-11 16:28:04作者:申梦珏Efrain
引言
在区块链技术领域,Schnorr签名因其简洁性和安全性而备受关注。本文将通过The Lightning Network Book中的简化示例,深入浅出地讲解Schnorr签名的工作原理及其在多重签名(MuSig)中的应用。
Schnorr签名基础
Schnorr签名是一种基于离散对数问题的数字签名方案,相比ECDSA签名具有以下优势:
- 线性特性,支持签名聚合
- 更简单的安全性证明
- 更小的签名尺寸
简化示例设置
示例中使用了一个极小的循环群(阶为23)来演示Schnorr签名,这使得我们可以手动验证所有计算:
p = 23 # 群的阶
points = {i: chr(97+i) for i in range(p)} # 将数字映射为字母表示
密钥对生成
在Schnorr签名中,每个参与者都有自己的私钥和公钥:
x_a = 17 # 用户A的私钥
A = points[x_a] # 用户A的公钥
x_b = 15 # 用户B的私钥
B = points[x_b] # 用户B的公钥
签名过程
Schnorr签名的生成包含以下步骤:
- 选择一个随机数r(称为nonce)
- 计算R = r·G (G是生成元)
- 计算e = H(R||m) (消息的哈希)
- 计算s = r + e·x
- 签名为(R, s)
示例中的实现:
def sign(m, priv):
r = random.randint(0, 22) # 随机nonce
return (r + H(m)*priv) % p, points[r] # 返回(s, R)
验证过程
验证签名时,检查以下等式是否成立:
s·G = R + e·P
其中P是公钥,e是消息哈希。
示例中的验证函数:
def verify(s, R, m, pub):
lhs = points[s] # s·G
rhs = add_points(R, scalar_mult_point(H(m), pub)) # R + e·P
return lhs == rhs
多重签名(MuSig)
Schnorr签名的线性特性使其非常适合多重签名场景。多个参与者可以合作生成一个聚合签名,验证时只需验证这个聚合签名。
聚合过程
- 聚合公钥:P = P₁ + P₂
- 聚合R值:R = R₁ + R₂
- 聚合签名:s = s₁ + s₂
示例代码:
AB = add_points(A,B) # 聚合公钥
R_ab = add_points(R_a, R_b) # 聚合R值
s_ab = (s_a + s_b) % p # 聚合签名
安全性考虑
虽然示例使用了极小的群来简化理解,但实际应用中需要注意:
- 必须使用足够大的群(如256位)来保证安全性
- nonce必须随机且不可预测
- 实际实现应使用标准化的椭圆曲线(如secp256k1)
结语
通过这个简化示例,我们深入理解了Schnorr签名的工作原理及其在多重签名中的应用。这种签名方案因其简洁性和可聚合性,在闪电网络等二层解决方案中发挥着重要作用。
理解这些基础概念对于深入研究区块链技术,特别是闪电网络等二层扩容方案至关重要。希望本文能帮助读者建立对Schnorr签名的直观理解。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
226
2.28 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.43 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
214
288