ZLMediaKit UDP推流丢包问题分析与解决方案
2025-05-15 21:45:26作者:翟萌耘Ralph
问题背景
在使用ZLMediaKit进行多路国标推流时,用户遇到了UDP推流丢包的问题。具体表现为接收端日志中出现大量RTP丢包警告,但奇怪的是发送端的抓包分析显示序列号不连续,而接收端解码却没有报错。
问题现象分析
通过抓包分析发现,UDP数据包在传输过程中确实存在序列号不连续的情况。主要表现特征包括:
- 接收端日志频繁出现"rtp丢包"警告
- 抓包结果显示序列号跳跃
- 解码器端未报告错误
- 网络接口统计未显示TX_DROP
根本原因
经过深入分析,发现问题根源在于ZLMediaKit的UDP发送机制设计:
- 单线程发送瓶颈:ZLMediaKit默认采用单线程发送多路RTP流,当推流路数过多时,单线程处理能力达到瓶颈
- 无发送间隔控制:代码中没有对UDP发送速率进行主动控制,可能导致短时间内大量数据包涌入网络栈
- UDP协议特性:UDP本身是无连接的不可靠协议,在网络拥塞时会出现丢包
解决方案
针对这一问题,我们提出以下解决方案:
1. 增加发送间隔控制
在RtpSender.cpp中增加发送间隔控制逻辑,强制每包发送间隔不小于2ms:
if (_rtp_send_ticker.elapsedTime() <= 2) {
usleep(2);
}
_socket_rtp->send(std::make_shared<BufferRtp>(std::move(packet), RtpPacket::kRtpTcpHeaderSize), nullptr, 0, ++i == size);
_rtp_send_ticker.resetTime();
2. 分流发送策略
更优的解决方案是将推流任务分散到多个源:
- 将500路推流分成50个源
- 每个源负责10路推流
- 通过负载均衡实现并行发送
这种架构可以充分利用多核CPU性能,避免单线程瓶颈。
技术原理深入
UDP发送性能考量
UDP发送性能受多种因素影响:
- 系统缓冲区:每个UDP socket都有发送缓冲区,大小可通过系统参数调整
- 网络栈处理能力:内核网络协议栈处理能力有限
- 网卡队列深度:网卡本身的发送队列深度会影响丢包率
性能优化建议
对于高并发UDP推流场景,建议进行以下系统优化:
-
调整内核网络参数:
net.core.wmem_max = 167772160 net.core.rmem_max = 167772160 net.core.wmem_default = 16777216 net.core.rmem_default = 16777216 -
监控网络接口统计:
ifconfig ethtool -S eth0 -
使用多线程架构分散发送压力
结论
ZLMediaKit作为高性能流媒体服务器,在常规使用场景下表现优异。但在极端高并发UDP推流场景下,需要特别注意发送架构设计。通过合理的分流策略和系统优化,可以有效解决UDP丢包问题,保证流媒体传输质量。
对于开发者而言,理解底层网络协议特性和系统性能瓶颈,是设计高可靠性流媒体系统的关键。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350