Artillery项目Fargate测试中的EMFILE错误分析与解决方案
2025-05-27 12:33:09作者:昌雅子Ethen
问题背景
在使用Artillery进行AWS Fargate负载测试时,开发者经常会遇到EMFILE错误和性能指标异常的问题。这类问题通常表现为测试容器无法建立足够的网络连接,导致测试结果不准确甚至失败。
错误现象分析
EMFILE错误是Node.js中常见的系统级错误,表示进程打开了过多的文件描述符,达到了系统限制。在负载测试场景下,这通常意味着:
- 测试容器尝试建立过多并发连接
- 容器资源(特别是文件描述符)配置不足
- 测试脚本设计不合理,导致单个容器负载过高
根本原因
通过分析测试配置,我们发现几个关键问题:
- 测试设计不合理:单个容器承担了过高负载,如250的到达率配合100次循环,导致实际请求量远超预期
- 资源限制未优化:Fargate任务默认的文件描述符限制不足以支持高并发测试
- 水平扩展不足:过度依赖单个容器的垂直扩展能力,而非采用多容器水平扩展策略
解决方案
1. 合理设计测试负载
对于高并发测试,应采用"小而多"的策略:
phases:
- duration: 2m
arrivalRate: 4 # 较低的单容器负载
rampTo: 41
然后通过--count
参数启动多个测试容器,如41个,实现总负载的线性扩展。
2. 优化Fargate任务配置
在任务定义中增加文件描述符限制:
"ulimits": [
{
"name": "nofile",
"softLimit": 65536,
"hardLimit": 65536
}
]
3. WebSocket测试注意事项
对于WebSocket测试,需要特别注意:
- 使用
maxVusers
限制最大并发用户数 - 理解
duration
控制的是新用户到达速率,而非测试总时长 - 长时间的
think
操作会导致用户持续累积
phases:
- duration: 60s
arrivalRate: 20
maxVusers: 1000 # 限制最大并发数
性能指标解读
当出现以下指标时,通常表示测试存在问题:
min: Infinity
max: -Infinity
mean: NaN
这表明测试未能正确收集到有效数据,可能原因包括:
- 所有请求都失败了
- 测试容器资源耗尽
- 网络连接问题导致无法完成测试
最佳实践建议
- 渐进式测试:从小规模开始,逐步增加负载
- 监控先行:确保有完善的监控机制,及时发现资源瓶颈
- 区域均衡:多区域测试时,合理分配各区域负载
- 日志分析:定期检查容器日志,识别潜在问题
- 资源预留:为测试环境预留足够的资源余量
通过以上优化措施,可以显著提高Artillery在Fargate环境下的测试稳定性和准确性,为大规模负载测试提供可靠保障。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~087CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp课程视频测验中的Tab键导航问题解析3 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析4 freeCodeCamp博客页面工作坊中的断言方法优化建议5 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp音乐播放器项目中的函数调用问题解析9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp 课程中关于角色与职责描述的语法优化建议
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
884
524

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
187

React Native鸿蒙化仓库
C++
182
264

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
364
381

deepin linux kernel
C
22
5

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
113
45

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
831
23

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
736
105